

TMCE 2006 symposium April 18 - 22, 2006 Ljubljana, Slovenia

TMCE 2006 tutorial:

Non-conventional machining processes in view of modern production

Prof. Mihael Junkar

University of Ljubljana Laboratory for Alternative Technologies Faculty of Mechanical Engineering

Ljubljana, 18th April 2006

Content

- I. Interdependence of design, materials and machining,
- **II.** Product innovation process,
- **III.** Matching the design and technology,
- IV. Overview of basic non-conventional machining processes,
- V. Future trends in machining.

Interdependence of design, materials and machining

Interdependence of costs, quality and delivery time

Concurrent Engineering

Brainstorming activities (Shanker & Jansson, 1993)

Product innovation process

Modification opportunities

CREATIVITY MATRIX12341st levelCCOPRODUCT2st levelCCOOTECHNOLOGY3st levelCOOOPROCESS

- 1 TRADICIONAL CONTROL ORGANISATION
- 2 PROCESS IMPROVEMENT ORGANISATION
- **3 PROCESS MANAGEMENT ORGANISATION**
- 4 TRANSFORMATIONAL ORGANISATION

THE 'LEVELS OF CREATIVITY' WE FOUND IN SEVERAL UK COMPANIES WHO HAVE CURRENTLY ENGAGED IN ATTEMPTS TO IMPLEMENT ADVANCED TECHNOLOGIES.

WE HAVE, FOR WANT OF A BETTER PHRASE, TERMED THIS THE 'CREATIVITY MATRIX'!

Levy, Junkar: Manuf. syst. (Aachen), 1995

CREATIVITY MATRIX

- PROVIDING ROUGH MEASURING OF CREATIVE INPUT IN RELATION TO MARKET COMPLEXITY "CLOSED" OR "OPEN" TO OPERATORS CREATIVITY

PRODUCT Complexity Level	LOW	LEVEL OF CO	OMPLEXITY	HIGH	CRITICAL ACTIVITY		
1 st	CLOSED	CLOSED	CLOSED	OPEN	TECHNOLOGY PLANNING		
2 st	CLOSED	CLOSED	OPEN	OPEN	PLANNING OF OPERATION		
3 st	CLOSED	OPEN	OPEN	OPEN	MACHINE PARAMETER SETTING		

Levy, Junkar: Manuf. syst. (Aachen), 1995

Product functionality

Design functionality

Aesthetic design

Technical functionality

Junkar, Kolaric, 2002

Ljubljana, 18th April 2006

Matching the design and technology

Process selection procedure

Junkar, Kramar: CIRP J Manuf Sys, 2004

Process selection software

CuttingMaster v1.0 Program						<u>_ 0 ×</u>	×		CuttingMa	aster v1.0						×
Step 1: Initial Scree	ening								Step 2	2: Primary a	and Performa	ance Assess	ment			
Material	Stainless STEEL	A₩J [LASER	OFC	PAC V	/EDM				Material	Stainless STEEL	Water Pre	ssure (MPa)	300		
Thickness (mm)	12			8						Thickness (mm)	12	Orifice D	ameter (mm)	0,3		
Tolerance Class IT	12			×					Q	luality Level (1.2 -5)	3	Cutting Velocity	(mm/min)	71		
HAZ (mm)	0,3			×	×											
Taper (mm)	0,2			×	×			/		Hint 1 Mat 1						
Min. Radius (mm)	2			×						Hint 2 Mat 1						
Min. Hole (mm)	6			×	×					Hint 3 Mat 1						
Witdh of Cut (mm)										The other t						
Section Rate (mm)	5			×	×											
E sak			< Previou	us Step	N	ext Step >			E	xit			< Previous	Step	Next Step >	

tep 3: Economic	Evaluation			
AWJ LASER UFC PAU	I WEDM			
Material	Stainless STEEL	Electricity Price (EUR/kWh)	0,12	
Thickness (mm)	12	Water Price (EUR/I)	0,005	
Quality Level (1.2-5)	3	Abrasive Price (EUR/kg)	0,7	
Initial Cost (EUR)	150000	Orifice Price (EUR/part)	12	
Deprecation (years)	7,5	Mixing Tube Price (EUR/part)	95	
Machine Utilization (h/year)	2000	Cutting Velocity (mm/min)	70,72	
Maintenance (EUR/year)	5000	Total Cost (EUR/h)	34,6	
		Total Cost (EUR/m)	8,2	

Junkar, Kramar: CIRP J Manuf Sys, 2004

Contour cutting processes

Process optimization

Valentincic, Brissaud, Junkar: J Mater Proc Techn, 2006

Ljubljana, 18th April 2006

Process optimization software

/ Instructions $$ Machines DB $$ Shape protot	ypes ү To	olerances :	1/2 \ T	ole	rances 2/	2 🗸 Panar	meters DB $igvee$ Feature $igvee$					
Workpiece material:hardened s	teel											
Surface area of the feature:		<u>)</u> 110	mm				Setup parameters switching at:					
Depth of the feature:		<u>)</u> 10	mm				$\begin{array}{l} hi[1][4] = 0.0099 \\ hi[1][3] = 0.0299 \\ hi[2][7] = 0.0299 \end{array}$					
Surface roughness (Ra):	ž.1	um				hi[2][6] = 0.04 hi[2][5] = 0.0199						
Depth of the HAZ:	ž7.5	um hi[2][4] = 0.0099 hi[2][3] = 0.0299										
Do Ra and HRZ hold for vertical surfaces?		🗢 yes	$h_1[3][7] = 0.3999$ $h_1[3][6] = 0.049$ $h_1[3][5] = 0.0199$									
Slope of the surface between 5 in 90 is		. <u>90</u>	degree				hi[3][4] = 0.0099 hi[3][3] = 0.0299					
Roundness (r1) at depth (h1):	r =	ľ	mm,	h	<u>)</u> 10	mm	hi[4][7] = 2.8999 hi[4][6] = 0.04					
Roundness (r2) at depth (h2):	r =	<u>)</u> 0.7	mm,	h	ě	mm	hi[4][5] = 0.0199 hi[4][4] = 0.0099 hi[4][7] = 0.0299					
Roundness (r3) at depth (h3):	r =	<u>)</u> 0.5	mm,	h	<u>j</u> 0.5	mm	hi[5][7] = 0.8999 hi[5][6] = 0.04					
Roundness (r4) at depth (h4):	r =	<u>j</u> 0.4	mm,	h	ž	mm	hi[5][5] = 0.0199 hi[5][4] = 0.0099 hi[5][7] = 0.0009					
Roundness (r5) at depth (h5):	r =	<u>j</u> 0.2	mm,	h)i	mm	n1[5][3] = 0.0299					
Electrode material:	copper											
Number of electrodes:	2						Electrode edge wear length:					
The most rough regime:	7						Lc[5] = 0.1119 1c[5][5] =0.0018					
The most fine regime:	3	Polish	false				Lc[5] = 0.1137 lc[5][4] = 7.0E-4					
							lc[5] = 0.1145 lc[5][3] = 0.0023 lc[5] = 0.1169					
Dete	Determination of machining parameters											

Valentincic, Brissaud, Junkar: J Mater Proc Techn, 2006

Energy consumption for surface generation

Speed of surface generation [mm/s]

Development of machining processes and technologies

Ljubljana, 18th April 2006

Overview of basic non-conventional machining processes

TMCE 2006 symposium April 18 - 22, 2006 Ljubljana, Slovenia

Machining features of non-conventional machining:

- High speed of surface generation,
- High specific energy,
- Atomic scale processing,
- Metal removal is based on several complex physical and chemical phenomena,
- Their development and applications are still increasing,
- They are suitable for machining hard, brittle and the so called 'exotic' materials,
- They are suitable for workpieces with high shape complexity,
- They are suitable for automation of data communication,
- They fulfill high surface integrity and precision requirements,
- They meet miniaturization requirements.

The twelve death signs of a growing manufacturing company

(case study: "Boiling frog")

- 1. The rate of sales/demand acceleration has begun to decline even though the curve still increases the rate of increase is declining not easy to see unless you do the calculation,
- 2. Things are described as "nice", as "very comfortable" here there is a danger of a collusion of mediocrity,
- 3. A small increase in complaints or dissatisfaction either internally or externally,
- 4. There is an increase in loyalty from existing customers, but a tiny decline in the number of NEW customers or clients,
- 5. People don't get in as early as they used to, arrive and leave on time, more often,
- 6. An increase in the level of inventory/safety stock either materials, products, ideas not yet put into action,
- 7. A feeling of "drag" harder to get enthused, to get going, to be inspired,
- 8. One or several ideas/practices from the "early days" are still in place, and really shouldn't be,
- 9. The organization is stifled in terms of innovation through over-dependence on technology or one or two people/small groups,
- 10. A small but perceptible rise in complaints about the product, service or the relationship. One or two important "first" customers have moved on,
- 11. Costs are eating a little more each month into profitability through a "slackness" with resources,
- 12. There is a hint of "sameness" of boredom, even in an apparently exciting and changing environment. A lack of real "buzz".

Junkar, Levy: MIT, 2005

Abrasive Water Jet (AWJ) Electro Discharge Machining (EDM) LASER machining

TMCE 2006 symposium April 18 - 22, 2006

Liubliana, Slovenia

Surface texture after non-conventional machining

Applications of jet based technologies

Approach to understanding the machining process

TMCE 2006 symposium April 18 - 22, 2006 Liubliana, Slovenia

Monitoring and modeling of AWJ process

Jurisevic et al: 37th CIRP ISMS, 2004

Examples of modeling the AWJ process

Orbanic, Junkar: WJTA, 2005

/abrasive particle velocity (v_A)/. fixed process parameters:

hso, v_T, cutting head geometry (do, d_F, I_F), abrasive parameters (type, #A, mA).

Junkar et al: I J Imp Eng, 2006

Ljubljana, 18th April 2006

Future trends in machining Water Jet Incremental Sheet Metal Forming - WJISMF

Jurisevic, Kuzman, Junkar: I J Adv Manuf Tech, 2005

Future trends in machining: Multi-Material Micro Manufacture

Ljubljana, 18th April 2006

Future trends in machining: Multi-Material Micro Manufacture

Future trends in machining: Micro tooling

Jurisevic et al: 4M Workshop Budapest, 2006

