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Nikola Jelić, without whom this thesis would never have become a reality. It is his

great unselfishness and persistence in unfolding the mysteries of plasma physics that

dragged me towards finishing this thesis.

To my supervisor, doc. dr. Leon Kos, who was an almost endless source of wisdom

and knowledge that helped me evolve from a curious student to a colleague. I will
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Ključne besede:
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PACS:

52.25.Dg, 02.60.Nm, 52.40.Kh, 52.65.-y, 94.20.Fg, 95.75.Pq, 02.70.-c, 52.58.-c

Izvleček:

Plašč plazme volumsko predstavlja majhen, vendar zelo pomemben, del industri-

jskih, laboratorijskih ali fuzijskih plazemskih naprav. V plašču se dogajajo velike

časovne in prostorske spremembe parametrov plazme (električno polje, potenciali,

itd.). V magistrskem delu je za modeliranje plazemskega plašča in pogojev nas-

tanka virtualne katode uporabljen model planarne diode. Predstavljeni so teoretični

(fizikalni) modeli popisa nastanka virtualne katode ter primeri simulacije njenega

nastanka s preizkušenim simulacijskim programom XOOPIC v 2D prostoru. V

XOOPIC, ki 2D Particle-In-Cell (PIC) koda, so bile za ugotovljene pomanjkljivosti

dograjene izbolǰsave. Kot nov prispevek je bila dograjeno določanje gradientov elek-

tričnih polj. Pomanjkljivosti odpravlja predstavljena brezmrežna metoda treecode

(TC), ki je bila dodana v obstoječo 1D simulacijsko kodo. Predstavljeni so rezultati

simulacij s PIC in TC programi kot tudi primerjava rezultatov obeh simulacijskih

programov.

vii



viii



Code nr: M/1089 UDC 004.942:519.876.5(043.2)

Janez Krek

APPLICATION OF NUMERICAL METHODS AND COMPUTATIONAL SIMU-

LATIONS TO PLASMA–SHEATH CONDITIONS FOR VIRTUAL CATHODES

UNDER HIGH EMISSION CURRENTS

Keywords:

plasma sheath, computer simulation methods, discharge in diode, virtual cathode,

Particle-In-Cell (PIC) method, gridless treecode method

PACS:

52.25.Dg, 02.60.Nm, 52.40.Kh, 52.65.-y, 94.20.Fg, 95.75.Pq, 02.70.-c, 52.58.-c

Abstract:

A plasma sheath, in terms of volume, represents a small but very important part

of industrial, laboratory or fusion plasma devices. In a plasma sheath one can

observe the large time and space changes of the plasma parameters, e.g., the electric

field, potential, etc. In this thesis, a planar diode was used to model the plasma

sheath and the conditions for the creation of a virtual cathode. Theoretical (physics)

models and simulations in 2D space with the well-known simulations application

XOOPIC are presented. For XOOPIC, which is a 2D Particle-In-Cell (PIC) code,

the shortcomings and improvements are presented. One of the improvements was

the computing of the electric field gradients. Some of the shortcomings are addressed

with the presented gridless treecode (TC) method that was used in a new, stand-

alone simulation code and also added to the existing 1D simulation code OOPD1,

alongside the existing PIC method. The results acquired with the PIC and TC

simulation codes are presented, together with a comparison of the results of both

codes.
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Chapter 1

Introduction

1.1 Scientific/engineering problem identification

and methodological approach

When designing and operating a plasma device one has to understand its main

working principles and the underlying physical laws in detail, which include a de-

scription of the volume, surface and plasma boundary conditions, external electric

circuit processes and system elements. This highly demanding task requires that

one adequately defines each necessary parameter or variable at each point of the

system (device) in space and time, which is a rather demanding task that is sel-

dom completely solved by theoretical means. On the other hand, in a laboratory

experiment a large number of parameters for such highly non-linear, self-consistent

systems (including the experimental uncertainties originating from measurements,

gas-composition properties, material impurities and physical imperfections, etc.)

usually offers the scientist the opportunity to clearly distinguish the degree of impor-

tance for each parameter compared to other system/discharge parameters. However,

in a numerical simulation this is possible simply by introducing or ignoring individ-

ual parameters in a series of numerical ”experiments”. Unfortunately, a plasma as a

circuit element is still a complicated element to simulate with a numerical simulation

due to the intrinsic presence of several space and time scalings, such as system trav-

elling times and oscillations for light versus heavy particles, various lengths (Debye,

plasma and collisional/ionisation length), etc. The thesis first presents the iden-

tification of some such characteristic times and lengths in several discharges, with

special attention given to the regions of localised strong electric/magnetic fields

and their gradients. The investigations include their behaviour in time, looking

for special cases when these structures are stable or unstable (monotonic or non-

monotonic). The reason for this research originates from the need to keep these

structures under control in order to achieve the desired plasma parameters. The
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Introduction

appearance and location of such structures are closely related to the charged par-

ticles that originate from outside the quasi-neutral plasma (e.g., due to secondary,

field-induced, temperature-emission-caused, intentional beam injections, etc.). The

most typical example of such a structure is the so-called virtual cathode. In order

to prevent or support their existence, one has to carefully investigate the conditions

for its creation or removal. This thesis presents an investigation of the plasma and

sheath properties in several discharge scenarios. These scenarios are very different

from each other for the purposes of obtaining the necessary information about how

to update existing or build new numerical simulation codes. The simulation codes

will be developed in such a way that they will be used in a large variety of future

investigations/applications of such localised structures (related to high plasma/field

gradients). The state of the art of the investigations and numerical simulations are

as follows.

1.2 Overview of the investigations related to vir-

tual cathode appearance

1.2.1 Physical background

The gas-filled diode [2, 3] is one of the oldest and one of the most exhaustively inves-

tigated problems in the history of plasma physics. It is employed in a wide range of

applications: as a basic component in electronic circuits, high-power electric devices,

lasers, new material production, nuclear reaction chamber for new isotopes, x-rays,

neutron and ion beams’ production or as a nuclear fusion device’s main chamber

[4, 5, 6, 7, 8, 9]. In any of these applications a gas-filled diode essentially transforms

and releases an externally stored electrical energy ”bank” into a new, physical state:

electrical/electromagnetic energy, gas, liquid, material, or even nuclear state and en-

ergy. For this reason, a diode must always be part of a closed external electric circuit

and should be properly designed and tuned for each particular kind of transforma-

tion. A few of the simplest options for an external power supply are shown in Fig. 1.1

and are used in the following: pure DC discharge tube/diode-experiments and appli-

cations (GA), Dense Plasma Focus (DPF) devices (GB) and the industrial testing of

lightening discharges protectors (GC). Option GA is the basic experimental device

for tuning simultaneously both the current and the potential on a classic direct-

current (DC) current-voltage characteristic, where the external resistor R plays an

essential role, while the auxiliary capacitor represents a bypass for any AC pertur-

bation (e.g., [10]). Option GB is employed in processes that require extremely fast

transferring of the capacitor bank’s electrostatic energy into a highly localised region

(e.g., in DPFs [7]). The physical processes therein assume simultaneous implod-

ing electric, magnetic and particle kinetic energy in a self-consistent manner. The

2



1.2 Overview of the investigations related to virtual cathode appearance

discharge characteristics also depend on the diode geometry, the electrode material,

the gas properties, the capacitor bank (C0), the switch (sw) characteristics, and the

”parasitic” impedance (L0 and ZD0). Option GC is most frequently designed with

specially constructed ”ideal” current generators I(t), where the basic requirement is

that a diode (such as the surge protectors of a Gas Discharge Arrestor type) should

act as a short-cut for the extremely high currents and voltages within a short inter-

val (e.g., several tens of µs after a certain prescribed voltage is detected), otherwise

it should behave as an infinitely high resistance. Thus, in contrast to option GB,

the external energy should be released to the ground as soon as possible, with the

minimum internal dissipation.

I(t)

GB GC

Cathode

Anode

L0

R

PLASMA

GA

sw

VQ

Q0C0

V

C

DIODE

ZD

Figure 1.1: Optional electric circuits in research and applications, shown together
with a schematic drawing of a diode with the developed plasma.

Although, on one hand, the above experiments and applications work well, the

progress towards the optimisation of their performance is relatively slow. Not only

have substantially new solutions and designs not appeared for years, but even some

fundamental physical aspects within discharges in many widely used and commer-

cially produced devices are not understood and remain unexplained. This is because

the processes in gases, materials, and plasma in such devices not only have a complex

physical background, but are also so numerous that their effects may considerably

mask each other.

The current-voltage characteristic of a diode is a basic indication of its perfor-

mance, but it is highly dependent on a particular application. The typical experi-

3
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mental DC current-voltage characteristic of the apparently most simple case (a diode

within a glass tube) is presented in Fig. 1.2. While it is relatively easy to obtain

such a curve under (low-cost) laboratory-setup conditions, its description and un-

derstanding requires the identification of a large number of parameters that might

be responsible for each of the regimes (as indicated therein). These regimes are

essentially related to the degree of ionisation of the so-called ”working” gas. It is

assumed that the negative electrode (cathode) is capable of emitting a certain num-

ber of electrons that can travel to the opposite electrode (anode), either due to their

initial kinetic energy or due to their extraction and acceleration in the electric field

that is established between the electrodes. If the ionisation can be completely ne-

V
o
lt

ag
e 

[V
]

Current [A]

1 10
210

-8
10

-2
10

-6
10

-4
10

410
-10

J

E

A

G

D

F F

H

I

K

C

B

regime

thermal

arc

nonthermal
glow

abnormal

normal

glow

townsend

regime

arc

saturation

ionization

Dark discharge Glow discharge Arc discharge

glow-to-arc

transition
voltage

breakdown
Corona

background

Figure 1.2: Working regimes of gas-filled diode.

glected, the diode is in a plasma-free regime, which corresponds to the section A-B in

Fig. 1.2. While the volume ionisation might be neglected, i.e., the between-electrode

space (gap) is free of positive charges (ions), the electron density can be built by

electrons extracted from the cathode due to various mechanisms (increased cath-

ode temperature, secondary-electron emission, possible beta radiation, etc.). The

possible effects of the electron space-charge presence with respect to the potential

profile are sketched in Fig. 1.3. The black curves A-D correspond to various electron

emissions/currents: vanishing (A), small but non-vanishing (B), co-called ”critical”

(C) and rather high (D) electron emission/currents. The electron emission/current

(space charge effects) for the curves A to D (Fig. 1.2) are obtained along section

A-B of the current-voltage characteristics from Fig. 1.2.
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1.2 Overview of the investigations related to virtual cathode appearance

Figure 1.3: Potential profile in diode in different diode regimes.

When the potential profile is monotonic (curves A to C on 1.3) the current-

voltage characteristic is described using the Child-Langmuir formula [11]:

J =
4ε0
9

√

2e

me

V
3/2
a

d2
(1.1)

where Va is the potential on the anode, d is the distance between the anode and

the cathode, e is the basic charge (1.60217 · 10−19C) and me is the electron mass

(9.10938 · 10−31kg). When the electron emission increases (hot electrode emission,

electric field-induced emissions), a virtual cathode is formed (curve D in Fig. 1.3).

The theoretical current-voltage characteristic within the ”D-sub-regime” is, how-

ever, much more complicated [12, 13] (see Sec. 4). An additional problem, which

increases the complexity of the “D-sub-regime” is that the virtual cathode is not

necessarily a stable structure [14, 15]. This makes it difficult to fully describe it

using the analytic method from [12, 13] (and references therein), and therefore a

computational simulation method is used (see Sec. 3).

It should also be noted that the virtual cathode forms provided that a high-

density electron current is emitted from the physical cathode. High electron densities
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are frequently desirable for maintaining a DC discharge, i.e., maintaining the plasma

with ”designed” parameters. This is especially the case in some so-called collisionless

and low-collisional plasmas. This is usually achieved by auxiliary heating of the

cathode so that the electrons (with a current density JG) are emitted in accordance

with the Dushman-Richardson formula [16]:

JC = ACT
2e−

W
kT (1.2)

where W is the “work function” (the material-specific threshold energy for thermo-

electron emission; a typical value for tungsten is W ≈ 4.5eV ) and AC ≈ 6 ·
105A/m2K2. Providing that the energy of such electrons is above the ionisation

threshold (e.g., 13.59 eV for hydrogen, 15.76 for argon) and the diode length is

sufficient, the so-called collisionless electrical gas breakdown can be achieved and a

steady plasma is maintained, even at relatively low gas pressures (of the order of

several Pa or lower).

In the past, starting from the beginnings of plasma physics, both collisionless

and collisional plasmas have been thoroughly theoretically investigated. Tonks and

Langmuir [17] defined the so-called plasma-sheath equation and divided this problem

into two parts, each described with its own equation(s): the plasma equation and

the sheath equation. The sheath equation is intended for use in the area near the

system boundary (wall) that is several Debye lengths (λD) long, and the plasma

equation is used in the rest of the system (of size L). The plasma equation, which

corresponds to strict plasma quasi-neutrality (ne = ni), is today known as the

Tonks and Langmuir (T&L) model [11] and is still far from being satisfactorily

solved, unless considerable simplifications of the physical processes within the plasma

are assumed. The gradually increased complexity of the investigation over time is

presented in a series of articles [18, 19, 20, 21, 22, 23, 24, 25]. The sheath equation

corresponds to the electric-field-dominated region and its description is also rather

complex, primarily due to the difficult-to-define boundary conditions [26, 27, 28,

29]. In the present work the effects of a non-negligible ion temperature on the

plasma sheath boundary, as well as the criteria for identifying such a boundary, are

presented [30] (see also Chapter 5) The T&L-model intrinsically corresponds to the

curve A′ in Fig. 1.3. However, computational simulations of a T&L-model, which

correspond to a non-monotonic sheath (such as the ones in the experiments of [31]),

are still missing.

It should be noted that the T&L-model was originally developed for modelling

the F-G region (normal discharge) in Fig. 1.2, within which the potential profile near

the cathode is monotonic (curve A′ in Fig. 1.3). It is still applicable to collisionless

discharges, for which the current-voltage characteristic does not coincide with that

from Fig. 1.2. Besides this similarity, both plasmas are macroscopically stable,

i.e., time independent. While the diode’s potential profile is evolving from a ”B”,

6



1.2 Overview of the investigations related to virtual cathode appearance

”C” or ”D”-shape (”empty” diode) to a A′-shape (”normal” plasma), the physical-

temporal-spatial processes within the inner-electrode space are extremely complex

and numerous. This is especially true for a collision-dominated system, i.e., a system

with a relatively high pressure (several tens of mbar). The mentioned temporal-

spatial evolution is in fact a process known as the transition to breakdown, which

is still the subject of in-depth investigations for a variety of applications. This was

elaborated in detail in a recent review [5] on Townsend’s mechanism, Paschen’s

law, possible streamers/filaments/arcs formations in spite of the fact that these

structures are experimentally known and have been investigated for more than a

century [32, 33, 34, 35]. Such a breakdown via the numerical simulation method

(see Chapter 6 and Ref. [36]) was investigated. A common observation is that

a variety of non-monotonic potential structures are formed during the transition

to breakdown in both collisionless and collision-dominated diodes. Once a steady

state is achieved, such structures usually become neutralised, i.e., virtual cathode

regions are filled by the plasma ions. Nevertheless, once the plasma is ignited, a

new source of external electrons might appear spontaneously due to the secondary-

electron emission caused by the plasma-cathode interaction/bombardment. One

such possible source of secondary emission is related to the high electric field strength

appearing in the sheath region, which can lead to so-called field-induced electron

emission, according to the Fowler-Nordheim equation:

J(x) = A
(βE)2

Φw

e−
BΦ

3/2

βE (1.3)

where Φw is the material’s ”work function” (representing the minimum necessary en-

ergy to extract a particle from a surface; for copper, Φw ≈ 4.4), A = 1.5414·10−6+ 4.52√
Φ ,

β is factor of field enhancement and depends on the surface shape (β = 300) and

B = 6.53 · 109. According to the theoretical predictions and experimental observa-

tions (e.g., [37, 31]), in cases when the plasma ions are incapable of compensating

for the space charge of the electrons emitted from the cathode or another surface, a

virtual cathode may appear, even in a steady plasma (curves C ′ and D′ in Fig. 1.3).

It is clear that the appearance of a virtual cathode might prevent the emitted

electrons from penetrating into the plasma region efficiently and may lead to an

undesirable plasma-density decrease and even to the disappearance of the plasma.

In order to investigate the possibility of such a scenario, it is necessary to investigate

the plasma parameters under various production conditions, i.e., both with and

without external electrons, as is partially the case throughout the present work.

However, the state-of-the-art numerical simulation codes do not allow simulations

for this task to be pursued sufficiently reliably and cost-effectively at the same time.
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1.2.2 Simulation methods background

Numerical simulations, as oposed to experiments, offer the important possibility to

include relevant physical mechanisms (models) in a step-by-step manner and provide

an ideal diagnostic tool at both the microscopic and macroscopic levels [38].

Diode investigations essentially require microscopic simulations with an extreme

spatial-temporal resolution, especially during the initial and transient stages. De-

spite the availability of huge computing power through the utilisation of computer

clusters and advanced simulation methods, these required higher spatial-temporal

resolutions still represents a major factor in choosing the simulation method(s) for

performing research. Namely, for simulating a single point at a direct current (DC)

current-voltage characteristic of a steady plasma in a cylindrical tube, regardless of

the regime (dark, glow or arc discharge), a tedious process of trial and error needs

to be be pursued (e.g., [39]). The task for obtaining the whole characteristic sounds

like an impossible mission. In contrast, in experiments a single point in the DC

current-voltage characteristic can be repeated any time almost instantly. The tran-

sition stage towards the breakdown situation, in comparison to pure DC discharges

in the steady state, represent a much harder problem, which is rather poorly in-

vestigated via kinetic codes, especially in cases when it leads to a extremely dense

plasmas.

The available non-commercial program packages turned out to be insufficiently

equipped with even some basic physical mechanisms, such as the feedback effects of

particle-generated fields back to charged particle dynamics (see [36], and Chapter 6

below and the corresponding references therein). Such basic physical mechanisms in

diodes, when used as gas-discharge arresters/tubes or dense plasma focus devices,

are unavoidably related to electron emission (mainly at cathode). This emission

could increase to strong, localized space-charge effects (high field and charged par-

ticle gradients), before and after a targeted degree of volume plasma production is

achieved.

Thus, in the present work, the adequacy of the available kinetic codes (Particle-

In-Cell: PIC) in the presence of strong field/particle gradients, has been questioned

(Chapter 6) and the plasma parameters in a “conventional” plasma-sheath transition

problem were investigated. The investigations were performed with a Particle-In-

Cell (PIC) code (see [40], and Chapter 5 below and corresponding references therein)

which showed that the relevant quantities are not changed sharply enough during

the particle flows to the boundaries, as expected in accordance with the theoretical

description.

A new simulation approach in the field of plasma simulations, the so-called

treecode (TC) method, has been employed and benchmarked under more elemen-
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1.3 Thesis overview

tary physical scenarios: in a 1D electrically short-cut plain diode with cold electrons

emitted from the cathode and with a disregarded volume plasma-creation (see [30],

and Chapter 5 below and corresponding references therein). The treecode (TC)

method [41, 42, 43] is a grid-free method that is, compared to grid-based (PIC)

methods, more suitable for utilisation in simulations where high gradients of simu-

lation quantities occur. In an investigation under elementary physical scenarios, the

results obtained with the PIC and treecode simulation codes fit each other well, as

well as with the theory [44]. In a more realistic (and in terms of utilized physical

models, more demanding) diode scenario with an electrically biased DC-cathode

with the strong emission of Maxwellian electrons, where the whole space charge is

located near the cathode (thus forming a potential-deep known as the “virtual cath-

ode”), the result of the PIC code does not fit the theoretical prediction, while the

grid-independent treecode method does (see [44], and Chapter 4 below and the corre-

sponding references therein). This indicates the necessity of preparing the treecode

method for dealing with a rather dense plasma.

The treecode simulation codes cannot, and should not, be directly compared

to the PIC and fluid simulation codes solely on supported (utilised) processes in

codes (ionisation, collisions, etc.), but also based on the quality of the results from

various “standard” simulations, so-called “benchmark” cases. It was suggested to

the author by international collaborators to add the treecode method into some of

the previously used (and available) PIC codes as an alternative method. This would

enable users to select the desired simulation method from the input file prior to the

start of the simulation and to simply compare the results from available methods

or to select a method that is better suited to current research. The first step in the

integration would be to integrate the treecode method in the 1D simulation code

(e.g., OOPD1 or PyPD1) and later into 2D codes, e.g., XOOPIC. It is expected that

only after that could the localised electrodynamic structures, densities and currents

in more complex discharge scenarios (like that from Ref [36] and Chapter 6) be

simulated, and hopefully successfully resolved, using the treecode method.

1.3 Thesis overview

The description of the objectives, the simulations and the results in the thesis are

structured as follows. Chapter 2 presents an overview of the physical background,

the simulation models and the codes that are later used for the research. Chapter 3

presents the research on a virtual cathode in a gas-evacuated diode with ”cold”

electron beam emissions from the cathode, shortcut bias and with comparison of 1D

Particle-In-Cell (PIC) and 1D treecode (TC) [30] results. Chapter 4 presents the

research on a diode with an arbitrary voltage applied to electrodes and with warm

electrons (half-Maxwellian) [44]. In Chapter 5, a diode with a specified rate of vol-
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ume ionisation is investigated, without secondary electrons for formulating plasma

boundary conditions in the limiting case of vanishing electron emission [45]. Chap-

ter 6 presents the results from investigating the sudden spacial-temporal evolution

of plasma parameters within a cylindrically shaped gas-discharge tube by applying

a 2D-PIC code [36] to illustrate the complexity of the full kinetic-Maxwell problem.

Chapter 7, discussion and conclusion, summarises the presented work and outlines

the plans for the future research and the development of simulation code(s).
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Chapter 2

Plasma physics and computer
simulations

2.1 Plasma background

Plasma, or the plasma state, is often referred to as the fourth state of matter, as

an ionised gas is, on average, considered neutral and consists of an equal number

of ions and electrons. The difference between an ordinary gas and plasma is that

plasma contains enough free charged particles for its dynamics to be dominated by

electromagnetic forces. Research on the phenomena in plasma is not a new field,

and the beginnings of the research go way back to the start of the 20th century.

The physics of plasmas has developed from many roots, which include solar physics

and in the wider sense from cosmic electrodynamics (with magnetohydrodynamics

- MHD) and the physics of gas discharges (light sources and arcs for welding and

cutting). Plasma research covers many areas, from thermonuclear fusion, astrophys-

ical and space plasmas, energy-efficient lighting, metal and waste recycling, surface

engineering, to the medical and health fields and the semi-conductor industry.

On the macroscopic scale, one can observe the following plasma properties:

1. plasma is a neutral gas

ne = ni, (2.1)

2. any strong electric field is localised to distances λD, that are short compared

with the characteristic system dimension L,

λD ≪ L, (2.2)
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3. the particle density is high,

n ≫ 1/λ3
D, (2.3)

2.1.1 Basic plasma properties and equations

Plasmas can be defined with a variety of properties or parameters. Here are some

of the basic parameters and equations that have to be fulfilled for plasma to exist.

Debye length

The Debye length is the minimum scale length over which a plasma can be considered

neutral and is a fundamental property of all plasmas. It is defined as:

λD =

√

ε0kTe

n0e2
(2.4)

where ε0 is the vacuum dielectric constant, k = 1.38 · 10−23 J/K is the Boltzmann

constant, T is the absolute temperature of the gas, n0 is the number density of

neutral particles and e is the elementary particle charge.

2.2 Computer-simulation methods

Computer simulations are an efficient design tool for providing accurate performance

predictions in plasma-physics applications. Computer simulations are based on var-

ious models that describe the plasma and the processes in the plasma, experimental

parameters and the simulation system geometry in different ways. The models gen-

erally describe the conservation of mass, energy, charge and also transformations

among the chemical species. Equations for such models can be derived fundamen-

tally from the general Boltzmann equation describing the probability distributions

of individual species in velocity space, subject to collisions and external forces and

from the set of Maxwell equations describing electromagnetic field interactions.

There are many different models for computer plasma simulations, which can

incorporate various features, such as the model dimensionality (complexity, 1D, 2D

or 3D), the use of a kinetic or fluid approach to describe the plasma-governing

equations, etc. Computer simulations of the plasma can be divided into two main

areas, based on how they describe the plasma and the processes inside the plasma [46,

38]: (1) fluid description (MHD model, wave equations) and (2) kinetic description

(Vlasov, Fokker-Planck codes; particle codes).
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The two main simulation-model descriptions differ in the way they describe

plasma and how they are trying to approach problems in plasma descriptions. Many

modern simulation programs incorporate both the fluid and kinetic models in plasma

simulations [47]. Hybrid models may treat electrons as a fluid, using the fluid model

to simulate them, and treat ions as particles, using the kinetic model for the simu-

lation of the ions.

2.2.1 Fluid model for plasma description

The fluid plasma model, in contrast to the kinetic model, represents a macroscopic

model of the plasma description and processes in the plasma. The main focus of the

fluid model’s representation is to describe the external features of the plasma, the

parameters/features that can be observed. This is very similar to experiments, as

in an experiment one seldom makes measurements at the microscopic level and no

attention is given to small details/internal processes inside the plasma, for example,

motion and forces on a single particle in the plasma. The aim of the fluid model

is to represent plasma independently of what happens on the molecular level - one

assumption is that the velocities of the particles inside the volume element can be

neglected. With this, the fluid variables are functions of the position and time. It

is similar to a fluid representation of the neutral gas and fluids, extended to include

the specific behaviour of the plasma and the processes inside the plasma. Fluid (or

continuum) plasma models reduce the computational complexity by averaging the

velocity-space effects.

In many cases, plasma could be modelled as a one-fluid model with the use of

magnetohydrodynamic (MHD) equations. The fundamental assumption is that the

fields and fluid fluctuate on the same time and length scales - on the scale of the

slower and heavier ions. In more advanced models, to support rapid wave fluctua-

tions in plasma (due to the fact that electrons are much faster than ions), plasma

is treated as a two-fluid model in plasma wave equations. Like MHD equations,

these are also macroscopic equations, but the assumption underlying them is quite

different.

In the fluid model of plasma description, one tries to numerically solve the mag-

netohydrodynamics (MHD) equations of the plasma by assuming transport coeffi-

cients. The fluid (or continuum) equations consist of three main equations, which

describe the conservation of particles, momentum and energy for particular particle

species. These equations work with quantities that are averages over all the particle

velocities in a small volume element. Plasma-fluid calculations are often valid even

though the main free path of the plasma particle is larger than the volume element

of the fluid.
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2.2.2 Kinetic model for the plasma description

The kinetic model is the most fundamental way to describe plasma - it describes

plasma from the microscopic level, starting with a description of the motion of

a single particle. Because they are dealing directly with various particles in the

plasma, they are potentially the most powerful models for studying the processes

in plasma. Depending on the processes taken into account in the simulation, those

equations can become quite complex and difficult to solve. With a large number of

particles usually present in the plasma, kinetic models require huge computational

resources regarding memory requirements, CPU power and also in computational

time.

Kinetic models utilise six-dimensional space (positions and velocities) and time to

describe the processes in plasma in greater detail compared to fluid models. Instead

of defining the density of the particles at a given position and time, the distribution

function is defined as f(~r,~v, t) - number of particles with a given velocity at a given

position in the system at a given time.

With a given distribution function fa, one can solve short- and long-range particle

interactions in plasma, either with or without the presence of an external electric

and magnetic field. In an electrostatic 1D system without a magnetic field present,

the energy-conservation equation (2.5) and the Poisson equation (2.6) describe the

basic set of equations.

n0u0 = nu ;
mu2

2
− eΦ =

mu2
0

2
(2.5)

d2Φ

dx2
=

e

ε0
n (2.6)

where x is the coordinate in the system (0 < x < L; L is the system length), m is

the mass of a particle, e is the charge of the particle, Φ is the electrostatic potential

and n is the number of particles.

The Vlasov-Poisson equations in a time-dependent, non-relativistic, zero-magnetic

field limit give:

∂fa
∂t

+ ~v
∂fa
∂~x

+
qa ~E

ma

∂fa
∂~v

= 0 (2.7)

∇ ~E − 4πρ = −∂2Φ

∂x2
(2.8)

where fa is the distribution function, ~x is the position, ~v is the velocity, ~E is the

electric field, ma is the particle mass, Φ is the potential and ρ is the space charge.
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2.3 Particle-In-Cell (PIC) method

Particle-in-Cell (PIC) simulation programs employ the kinetic model of the plasma

description as a base for the simulations. The PIC techniques grew from electron-

trajectory simulations in the 1950s, with capabilities to take into account just a few

particles. But later, in the 1960s, scientists in universities and national laboratories

developed PIC schemes that employed thousands of particles and normally used one-

dimensional systems. The main focus of the research (software-code development)

was on validating the physical and numerical models used in the PIC schemes.

Between 1960 and 1980 [46], the self-consistent PIC method was formalised and

put into computer code. Theoretical limitations and methods to overcome those

limitations were developed and described more formally. In the 1980s the first device

models and Monte-Carlo collisions were developed. These models were extended

with a self-consistent circuit model and an improved Monte-Carlo model in the

1990s. One path of development for the PIC simulation codes (computer codes) is

directed into developing object-oriented techniques and second in using PIC methods

on computer clusters. The object-oriented approach [48] would enable scientists (and

users at the same time) to write their own implementations of individual parts of the

simulation system (device, physical models, transport models, collisions, ionisation

models, etc.). Developing PIC code for computer cluster would utilize the parallel

computing and thus shorten necessary computer simulation times.

Particle-in-Cell (PIC) codes, as presented by [46], found applications in a wide

range of plasma investigations. They are based on the use of computer particles

(particles in the computer simulation), i.e., so-called “super-particles”, instead of

“real” particles (particles in the read system). The use of computer particles in

simulations is a solution to a problem where a huge number of real particles is

required in simulations that require huge computational resources. Thus, a single

“super-particle” contains as many as 106 “real” particles. Despite this method, in

many applications, especially in fusion-related investigations, PIC simulations still

take a long time to run. New parallel-computing techniques recently used in PIC

(and similar) simulation codes can reduce this time dramatically; however, the costs

of performing simulations are still very high. Another drawback of PIC codes is the

requirement for defining the grid in advance (uniform grid or self-adaptive grid).

Typical simulation (computer) times for a single iteration of a common simula-

tion case are in the range 1-10 seconds. This may seem short, but considering that

the real time step in a single iteration is often in the range of 10−8 s (or even 10−11 s)

and that usually simulations require up to 1.5 · 106 iterations to achieve a “steady

state”, the total simulation times can be up to 50-60 days. All the PIC simulation

applications (programs, computer codes) that are based on PIC techniques have a

similar main loop - a loop that forms the basis of a program/application. The basic
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steps in every PIC simulation code are shown in Fig. 2.1.

START

Read input file

Set initial params

end

simulation?

run with

collisions?

Particle loss/gain at

boundaries (emissions,

absorbtions, etc.)

Integration of

equations of motion

Fi → v'i → xi

(xi, vi) → (ρi, Ji)

Interpolation of particle

sources to grid

Integration of field

equations on grid

ρi, Ji) → (Ei, Bi)

Interpolation of fields

to particles

(Ei, Bi) → Fi

Advance time 

t + Δt → t

Monte-Carlo collisions

of motion

v'i → vi

END
YES

NO

NO

YES

Figure 2.1: Simple flowchart of PIC-simulation program with possible Monte Carlo
Collisions (PIC-MCC).

In addition to these basic steps, PIC simulation codes often offer the possibility

to simulate collisions inside the plasma, which is a necessity when the simulation

is performed with high-density plasma (where collisions between particles are more

likely to occur).
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2.4 The treecode (TC) method

The basic idea behind the treecode (TC), as presented by [41], is to replace particle-

to-particle interactions with particle-to-cluster interactions in such a way that the

number of necessary calculations is reduced without influencing the accuracy of the

method too much. By grouping particles into clusters, with each cluster replacing

many particles, the number of clusters is smaller than the number of particles. This

results in a smaller number of required interactions (and thus the required simulation

time) is reduced. The number of calculations for calculating the interaction between

the particles (particle-to-particle interactions; number of particles is defined by N)

are scaled according to O(N2). With the use of the TC method, the number of

interactions, now particle-to-cluster interactions, are scaled according to O(N logN)

- this is a huge reduction in the number of required calculations. In current plasma

simulations, where the number of particles is of the order of 1022 (or 1017 of super

particles), the number of particle-to-particle interactions represents a huge load,

even for today’s super computers, or at least computers that are normally used to

run simulations. One of the advantages of the TC method is its scalability, which

makes it a good candidate for running on parallel computers [49].

The TC method is simplest in 1D space, but it can also be extended in a way

that it can be used in 2D or 3D space, as presented by [50]. The difficult part in

extending the TC into dimensions higher than 1D is not the TC method itself, but

the underlying equations that are used for solving the physics of the simulation. Due

to the nature of the TC method, the TC method gives precisely the same results

in 1D space as the direct summation method, see [14]. The method introduces

another level of approximation to the PIC simulation, in addition to the already

widely used approximation using super-particles instead of “real” particles. With a

smart selection of the parameters for the TC method, as explained later, one can

minimise the impact of the TC approximation on the simulation results. The TC

method is gridless [51]; for running the simulation one does not need to define a grid

for calculating the values of interest, the “temporary” grid in the form of clusters

is automatically generated during each simulation step. The main computation of

the particle interactions (positions, velocities) are made using a generated tree and

without any grid. The grid is needed just as an auxiliary tool in the post-processing

(computing the values of the potential, etc.).

The most striking property of the TC method is the tree, which is the basis for

all the calculations and divides the computational domain into smaller parts. The

TC method could be used in the 1D, 2D or 3D domains. The purpose of building

the tree is the ability to represent the relations between the particles in simulating

the domain. With the generated tree, the positions of the particles in the nodes and

the relations between the nodes in the tree, the simulation method can perform a
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faster calculation of the forces between the particles. The force on a particle is then

used to compute the values of all the other relevant variables in the system, i.e.,

velocities, positions, fields, etc.

The tree is a hierarchical representation of particle positions in a simulation

system (an example of a 2D system is shown in Fig. 2.3). Because the tree depends

on particle positions, it is necessary to build the tree in each simulation step. The

tree is composed of nodes, links between nodes and leaves (Fig. 2.2a), where each

node can have zero or more children. The maximum number of children in each

node of a tree is defined by the dimensionality of the domain for which the tree is

created, and can be up to: 2 children for a 1D domain (also called binary trees), 4

children for a 2D domain (also called quad-trees) and 8 children for a 3D domain

(also called octrees).
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Figure 2.2: Example of tree representation (a) of square domain (b) (image taken
from [1]).
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There are nodes in a tree that have special names: nodes without children are

called leaves (nodes named a, h, i, etc. in Fig. 2.2) and a node without a parent is

called a root node (node named root in Fig. 2.2). The tree can be asymmetrical and

does not need to be full - there can be nodes in a tree that have fewer children than

the maximum number (for example: 1 child instead of a maximum of 4 children for

a 2D system) - see Fig. 2.2a.

2.4.1 Building a tree

Building a tree always starts with dividing the whole computational domain (see

Fig. 2.3, “level 0”) into equal sub-domains (parts): 2 parts for a 1D system, 4 parts

for a 2D system (as shown on Fig. 2.3) and 8 parts for a 3D system. Each of the

newly generated sub-domains is further checked against the “dividing conditions”

(e.g., the number of particles in the node, the size of the domain compared to the

system size) and, if conditions are right, it is subdivided further, creating a new

level in the final tree. The process of dividing the domains is repeated, usually via

recursion, until there are no sub-domains to divide (see Fig. 2.3, dividing the area

from level 2 to level 3). The selection of the “dividing conditions” greatly influences

the generated tree size, which then makes a difference in the computation part of

the method. A larger tree results in a slower simulation time and less gain from the

treecode method - the TC method is similar to the direct-summation method. A

smaller tree results in faster simulation times, but on the other hand, it incorporates

more approximation: using a particle-to-cluster interaction instead of a particle-to-

particle interaction brings to the simulation a certain error (this is not valid for 1D

systems, see [14]).

Fig. 2.4 presents a simple flowchart explaining the process of converting particle

positions in the simulation domain into a tree representation, as required by the TC

method. Fig. 2.3 presents an overview of the domain and the associated tree for a

simple 2D simulation domain.
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Figure 2.3: Individual steps in generation of tree and dividing domain into sub-
domains. Node marked as “0” is the “root” node.
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Figure 2.4: Global flowchart for creating tree.
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The necessary individual steps to divide the simulation domain into the tree rep-

resentation can be demonstrated on a simple square 2D domain with a few particles,

as displayed in Fig. 2.5.

Level 0
The whole simulation domain, containing all
the particles in the system, is considered. The
“root” nodes created in the tree - containing
all the particles in system.

0

Level 1
The whole domain is divided into 4 equal sub-
domains, each containing particles inside the
sub-domain. In the tree, level 1 is created and
4 nodes are added to the “root” note, repre-
senting 4 newly created sub-domains.

0

2 3 41

Level 2
Each sub-domain, created on “level 1” that
contains particles, is further subdivided into
smaller domains. Empty domains are not sub-
divided. In the tree, newly created domains
are added to an appropriate node in the tree -
to the “parent” node in the tree.

0

21 43

Level 3
In this step, the same procedure as in step
2 (on level 2) is repeated. The procedure is
repeated until there are no more domains to be
divided further and depend on the “dividing
condition”.

0

21 43

Figure 2.5: Division of the domain at each stage (level) and the associated trees.
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2.4.2 Multipole Acceptance Criteria (MAC)

Another characteristics of the treecode method is the definition of the Multipole

Acceptance Criteria (MAC) - the rule when a particle-to-particle (PtC) interaction

will be used instead of particle-to-particle (PtP) interactions. A Particle-to-cluster

(PtC) interaction is an advantage of the treecode method and brings a significant

speedup of the simulation compared to PtP interactions. The criteria, called Multi-

pole Acceptability criteria (MAC), are evaluated when the electrical field (or force)

is computed on a current particle. The force (or electric field) on each particle in the

system can be calculated using the following deduction (for the code implementation,

see Fig. 2.9):

a) PtC interaction (utilising a Taylor approximation) if the MAC criteria is OK

b) if the current cluster has clusters on the next level in the tree, repeat the

procedure with everyone of them

c) if the cluster does not have any clusters on the next level (in the tree), use the

direct summation (particles that are close to a current particle - maybe in the

same cluster)

The criteria, often denoted as θ, is considered one of the more important TC-

method parameters and is defined, according to [52], as displayed in Table 2.1 and

schematically presented in Fig. 2.6.

Name of criteria Condition
Barnes-Hut MAC (BH MAC) r1 > s/θ
min-distance MAC (MD MAC) r2 > s/θ
Bmax MAC r1 > bmax/θ

Table 2.1: Different multipole acceptance criteria and the required condition to be
fulfilled for the criteria to be accepted; the parameters are presented in Fig. 2.6.

Fig. 2.7 presents (in 1D and 2D system) the necessary values needed to make

a decision according to the MAC: particle locations, current particle xi, cluster C,

centre of cluster xC , cluster size (radius of cluster) rc and R as the distance between

the current particle and the cluster centre. The error-tolerance parameter θ, with

values in the interval 0 < θ ≤ 1, is used when making a decision, as presented in

Fig. 2.9 and as a simple if-else condition:

• use PtC interaction if: R > rc/θ

• otherwise use PtP interaction
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r1

r2
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Figure 2.6: Schematic presentation of different acceptance criteria (MAC). cm is the
center of mass for a given cluster, s is the max. external dimension of a cluster and
bmax is the max. distance from the centre of mass to the edge.
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Figure 2.7: Schematic diagram of a particle, cluster and MAC variables in 1D (a)
an 2D (b) system.
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2.4.3 Use of treecode (TC) method in simulation code

The treecode (TC) method is used in computer-simulation codes in a similar manner

to the PIC method. The main difference is the part where the actual computation

is performed, while other “support”, but required, activities (e.g., input-file reading,

exporting data for post-processing, etc.) are the same. This suggests that one

simulation code could utilise both methods and the user could select the desired

simulation method in the input file and thus the TC method could be added to the

current simulation codes. The simplified flowchart for a complete simulation using

the TC method is presented (Fig 2.8).

START

Read simulation

parameters

end

simulation?

Particle loss/gain at

boundaries (emissions,

absorbtions, etc.)

Build a tree from

particle positions

Advance time 

t + Δt → t

END

YES

NO

Initial789 simulation

: → ;

Compute Ei,Fi,vi,x i

using tree + PtP/PtC interactions

Figure 2.8: General flowchart of TC method.
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The C++ code snippet in Fig. 2.9 is a simplified computer code and shows how

the tree traverse is implemented, i.e., how the decision is implemented as to whether

to use the PtC, PtP interactions or continue the calculation on the next level in the

tree.

. .

. .

. .
/∗ c a l c u l a t e d i s t ance between current p a r t i c l e and the centre o f the c l u s t e r ∗/
l = node−>getDistanceFromCenter ( pt pos−>e1 ( ) ) ;
/∗ c a l c u l a t e rad ius o f t r e e node ( c l u s t e r )∗/
r = node−>getRadius ( ) ;

i f ( r < f abs ( l ) ∗ theta ) {
/∗ compute us ing p a r t i c l e−to−c l u s t e r i n t e r a c t i on : p a r t i c l e i s ” f a r ” from c l u s t e r

( node ) ∗/
Ec = compute Ec s ing le ( node−>getQc ( ) , l ) ;

} else {
i f ( node−>getLea f1 ( ) == NULL && node−>getLea f2 ( ) == NULL ) {

/∗ t h i s i s l a s t t r e e node and we have to compute the f o r ce with d i r e c t sum ∗/
Ec = compute Ec directSum ( pl , node , pt pos ) ;

} else {
/∗ decent one l e v e l down the t r e e and t r y computing us ing p a r t i c l e−to−c l u s t e r
i n t e r a c t i on on sub−c l u s t e r s ( l e a f s ) o f current c l u s t e r . The method c a l l s
i t s e l f ( recurs ion ) ! ∗/
Ec = 0 ;

i f ( node−>getLea f1 ( ) != NULL ) {
/∗ compute f o r f i r s t l e a f o f a node ∗/
Ec += compute Ec tc ( pl , node−>getLea f1 ( ) , pt pos ) ;

}

i f ( node−>getLea f2 ( ) != NULL ) {
/∗ compute f o r second l e a f o f a node ∗/
Ec += compute Ec tc ( pl , node−>getLea f2 ( ) , pt pos ) ;

}
}

}

/∗ re turn computed va lue ( in t h i s case va lue o f e l e c t r i c f i e l d ) to g iven
p a r t i c l e ∗/
return Ec ;

Figure 2.9: Simplified simulation code snippet presenting main decision in TC
method.

26



Chapter 3

Comparison of the PIC and TC
methods in a shortcut plain diode1

In their historical article, Barnes and Hut [41] presented the treecode (TC) method

as a way of reducing the number of necessary calculations when describing the

interactions between bodies (i.e., particles) in various systems. The basic idea of

the method is to replace, whenever possible, particle-to-particle (P-to-P) interactions

with particle-to-cluster (P-to-C) interactions. The conditions when clusters can

be used instead of particles mainly depend on the “size” (diameter) of a cluster

and the distance between the particle and the cluster’s centre point. In terms of

accuracy and speed, the treecode method can be positioned between the so-called

“direct summation” (known also as “direct integration”), with a typical process of

O(N2), and the PIC method ([46, 53, 54, 55]), with a typical process of O(N logN).

However, the main advantage of the TC method is its ability to deal with simulations

where the calculated values have high gradients. Namely, while resolving short-scale

structures in plasmas via a simulation method, like sheaths [56] and double layers,

the proper selection of a grid is of decisive importance. For resolving the sheath

via a numerical method with a sufficiently high accuracy, Kos et al. [57] employed

a non-uniform grid where the length of the grid cells closer to the wall was less

than 10−7 of the total length of the system. In the stationary state, obtaining the

solution required several days of calculations for a single case. Obtaining results

with high-resolution grids in non-stationary simulations appears to be a much more

demanding and expensive task than was expected and the treecode should carry out

these tasks more efficiently.

1Original/full text of this chapter was published in [30]
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3.1 Theoretical model of a plain diode

The theoretical model of a plain diode with mono-energetic electrons emitted from

the left-hand side of the system is used as a simulation model. This system may

be described via energy-conservation equations (2.5) and Poisson’s equation (2.6),

already presented in Chapter 2.2.2, where the equations can be transformed into:

d2Φ

dx2
=

e

ε0

n0
√

1 + 2eΦ
mu2

0

(3.1)

It is, furthermore, convenient to introduce dimensionless variables:

η =
2eΦ

mu2
0

; η(Φm) = ηm =
2eΦmin

mu2
0

(3.2)

ξ =
x

λ
; ξm =

x(Φmin)

λ
(3.3)

where λ is defined as:

λ =

√

mu2
0ε0

2n0e2
(3.4)

With dimensionless variables from equations (3.2) and (3.3), equation (3.1) be-

comes:
d2η

dξ2
= − 1√

1− η
(3.5)

with the solution:

ξ − ξm = ±2

3

(

√

1− η + 2
√

1− ηm

)(

√

1− η −
√

1− ηm

)(1/2)

(3.6)

The solution of equation (3.6) is shown in Fig. 3.1, where the potential profiles

for various values of ηm in stationary states are shown. The potential profile in the

stationary solution is symmetrical about the centre of the diode and by increasing the

density, the maximum possible potential depth (ηm = −3/4) is gradually obtained.

By increasing the density above a certain critical density, the maximum potential

profile depth jumps to ηm = −1. A further increase in the density does not lead to

a further potential depth increase (as is obvious for physical reasons, the maximum

potential depth cannot be greater than the initial electron energy), but the position

of the potential minimum is shifted closer to the cathode. A detailed inspection

shows that the way the potential depth depends on the history of the beam density,

i.e., shows a clear hysteresis behaviour. This is known to be related to instability,

which cannot be modelled by the present stationary equations. This is one of the

basic motivations for using this model for resolving the non-stationary behaviour

via simulation codes, as follows in the sections below.
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Figure 3.1: Theoretical potential profiles for diode.

3.2 Particle-In-Cell (PIC) method

The results for the short-cut diode in plane geometry were obtained using the PIC

simulation code BIT1 (Berkeley-Innsbruck-Tbilisi-1D PIC-MCC code) and are pre-

sented in Fig. 3.2.

The simulation system length l = 0.01m was divided into 100 cells, both walls

grounded, vacuum inside the diode, system cross-section area A = 10−4m2, simula-

tion time step was dt = 10−11s, 104 particles in one computer particle nc2p = 104

and injecting 5 computer particles per simulation step. The injected particles are

cold, mono-energetic electrons that are injected from the left-hand side wall with an

initial velocity of v0 = 4.2× 105m/s (velocity corresponds to 1eV energy). As seen

in Fig. 3.2a, during the initial stage of several ns the system is filled with particles,

leading to an increased space charge that produces a potential depth, as shown in

Fig. 3.2b. Once the space charge is high enough, the potential depth becomes suf-

ficiently strong and prevents new electrons from overcoming the potential barrier,

and they are repelled back to the emitting electrode. This leads to a movement of

the potential barrier and a consequent decrease in the density and the strength of

the potential barrier. A weaker potential barrier enables deeper penetration of the

emitted electrons into the diode. As a result, a periodic oscillation of the entire

system is established, as expected from the theoretical analysis.
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Figure 3.2: Number of “super-particles” in diode in relation to time (a) and potential
profiles (b) in various simulation steps in PIC simulation.
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3.3 Treecode (TC) method

3.3 Treecode (TC) method

As has already been shown (see [58]), the reliability of the results obtained using

the treecode method utilised in 1D simulation codes is as high as those of a direct

simulation method. This feature is a property of our code as well. To test the

grid-free treecode method, we developed a program in C language and compiled it

on the Linux operating system. The program allows the user to define the main

simulation parameters in the input file: densities, simulation system sizes, output

variables, parameters for tree generation, grid for computing potential, etc.

A special feature of our code is the possibility to investigate the fine structure of

the potential profile and its derivatives - the electric field as a function of position

and time with higher reliability. This is important for resolving the plasma-sheath

boundary in our future simulations of plain discharges with warm ions as they will

be compared with the results from our PIC simulations [59]. Namely, the problem

with PIC simulations on plain discharges arises due to the high plasma parameter’s

gradients near the plasma boundary, which are difficult to resolve without high grid

densities. Unfortunately, the mesh in the existing PIC codes is uniform across the

computing domain, while the simulation codes based on the treecode does not suffer

from such a limitation.

The simulation code enables the computation of various plasma parameters:

particle positions, densities, velocity distribution functions (VDFs), temperatures,

fluxes, etc. with a high resolution in regions of strong plasma and field gradients.

The results obtained from the present 1D version are precisely the same as the

results from (very demanding regarding computer resources) the direct summation

method. This feature arises from the fact that in 1D geometry, the underlying

numerical methods used in the treecode do not have additional errors [14].

3.4 Results

3.4.1 Phase-space comparison for TC from MatLab and C
programs

Our test case was a 1D virtual cathode problem, for which we compared the results

from the treecode method with a MatLab-based code [14] and our C-based code. The

MatLab program used for the comparison was developed in The Plasma Theory and

Simulation Group (based at Michigan State University) solely to check the adequacy

of the TC method in simulations of charged particles. It has many limitations, such

as no input file for defining the simulation case, the capability to simulate only single
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species and to handle just a few tens of particles in the system, to name just a few.

We used the same simulation parameters (spatial region, initial values) and recorded

results in a selected time, when the system was not yet in a quasi-stationary state.

We selected t = 0.45ns for the simulation time from the start of the simulation

and Fig. 3.3 (MatLab code - 3.3a; C program - 3.3b) show phase-space diagram for

the selected time. Once a quasi-stationary state is established, the system oscillates

with a period of T = 3.5ns. When simulating the virtual cathode, the system comes

to a quasi-stationary state and then oscillates.
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Figure 3.3: Comparison of phase-space diagrams at same simulation time (t=0.45ns)
from MatLab (a) and our program in C (b).
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3.4 Results

Fig. 3.4 shows the values for the phase-space diagram, the potential profile and

the density at various times during the oscillation cycle. The values for the density

are normalised to the total number of particles in the system and the density peak

is cut-off for readability reasons. The treecode method requires the definition of an

arbitrary grid, usually done in the input file, which is used solely for computing the

values of the potential at given points for the results post-processing. The potential

was computed using a Green’s function (see [14]) and was computed on a grid with

200 cells.
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Figure 3.4: Potential (a1, a2), phase-space (b1, b2) and particle density (c1, c2) in
one cycle. Left column when the potential is increasing and right column when it is
decreasing.
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The left column in Fig. 3.4 shows the potential profiles, densities and phase-space

diagrams during the first stage of the oscillation cycle (increasing the potential

from the minimum to the maximum value, i.e., during the decreasing number of

particles in the system). The right column shows the same quantities during the

opposite stage of the oscillation cycle (decreasing potential, i.e., increasing number

of particles). It is a little tricky to interpret the simultaneous behaviour of the

potential profile, the density and the phase-space in time on static figures, since the

positions of the particles are not simply related to the instant potential profile, but

are a consequence of the whole history during the period of the cycle. That is why

we have to obtain and store a huge amount of data to make the appropriate time-

dependent records to better observe the qualitative features of such time-delayed

effects at any point of observation of the said quantities.

3.4.2 Two species diode scenario

In order to reduce or even eliminate the oscillations in a diode (as shown in Fig. 3.5),

two species scenarios with injecting ions from the opposite side of the diode to the

electrons was researched. Simulations were performed for various values of the ratio

(denoted by R) between the injected electrons and the ions from 0% (no ions were

injected) to 100% (same numbers of ions and electrons were injected). The number

of injected electrons is the same for all values of the ratio R, only the number of

ions is increased according to the selected ratio R. The injection mass, the charge

and the velocity were selected to be the same for electrons and ions, only the sign

of the charge was different.

Fig. 3.5 shows the onset of oscillations Tonset and the oscillation period Tosc for

various ratios R (ratio between the number of injected of electrons and ions). We

can observe that the onset of the oscillations (Tonset) moves away from the start of

the simulation with an increasing ratio R between the injected electrons and the

ions. The system reaches a stable state only with one value and one value only -

when the number of injected ions is the same as the number of injected electrons,

i.e., R = 100%. With an increasing ratio R, the oscillation period (Tosc) shows

a tendency to increase also, to the point for R = 100%, when all the oscillations

disappear.

It is necessary to point out that the oscillations presented in Fig. 3.5, for the

ratio values 99.995% and 100%, do not originate from the numerical methods and

their errors. Namely, the characteristic frequency of the system can be readily

estimated as Tosc ≈ v0/L, where v0 is the initial injection velocity of the particles

and L is the length of the system. The detailed physical reasons concerning both

instabilities, the onset and the change of frequency with an increased ion density, is

a very intriguing feature, but one which is beyond the scope of this thesis. Fig. 3.6
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Figure 3.5: Illustration of the onset of oscillations (Tonset) and the oscillation period
(Tosc) for various ratios of electrons and ions (R) as injected on the left- and right-
hand side, respectively, with equal mass, charge and initial velocity.
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shows the changing onset of oscillations (Tonset) and the oscillation period (Tosc) in

relation to the injection ratio R. It is shown clearly that with an increase of the

ratio R, both Tonset and Tosc increase, with a maximum value of infinity for R =

100%.

However, these phenomena as well as the question why an infinitely small dif-

ference in the ratio of particles automatically leads to an unstable state, should be

investigated by analytic means. Of course, in a real experiment it is hard to expect

that we can adjust the ideal balance, so from this point of view, instability cannot

be stabilised at all. However, the fact that the simulation employs ideally mono-

energetic beams might be inherently a source of the presented scenario. Therefore,

the last assumption should be relaxed via employing beams of a finite energy spread

(e.g., shifted Maxwellian distributed particles). This is a task that will be fulfilled

during the upgrade of our program, so it will be capable of dealing with more realistic

simulations.
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Figure 3.6: Illustration of Tonset and Tosc change depending on electrons and ions
injection ratio R ranging from 0% to 100%.
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Chapter 4

Theory and simulations of
thermionic emissions in a simple
biased diode2

The problem of biased diodes with thermionic emission was first presented by Lang-

muir [11] with a theoretical solution predicting the dependence of a diode current

on a biased voltage in plane and cylindrical geometries. It was shown that an

increase in the density of emitting particles naturally leads to a potential barrier

with a non-monotonic potential profile. For many years, the value of the potential

minimum and its position were considered as the free parameters of this problem.

Nevertheless, analytical (explicit) expressions for these parameters were only found

many years later [60]. However, the question of the stability of such a structure,

with the potential bias as an external control parameter, has not yet been fully in-

vestigated. In this chapter, the gridless treecode (TC) method was used to address

this problem, in a similar manner to Christlieb [14] and Krek [15] for the case of a

short-cut diode (Chapter 3). Recent investigations were focused on confirming the

high reliability of the treecode method (compared to the direct summation and PIC

methods), while in the present investigation we apply the TC method to particu-

lar problems of engineering importance. Namely, we use the same cases that were

presented in Refs. [11, 60], which, in addition, implies cases with arbitrary finite

diode bias voltages, ranging from zero (short-cut) to bias values much higher that

the emitted particle’s thermal energy.

The simulation system is modelled by a plane-parallel diode, as shown in Fig. 4.1,

with a vacuum inside. The distance between the diode electrodes (the walls of the

system) is defined as d and the voltage on the cathode (left-hand-side electrode) is

defined as V0. The anode (right-hand-side electrode) is grounded (V1 = 0). The

2Original/full text was presented in [44]
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electrons have a Maxwellian distribution and are emitted from the cathode without

an initial velocity (v0 = 0) and with an initial temperature T = 1eV .
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Figure 4.1: Simplified presentation of plain diode with global coordinate system
(x− Φ) and coordinate system of introduced variables (ξ − η).

4.1 Langmuir exact solution (theoretical solution)

The exact (theoretical) solution of the potential profile inside a plain diode in a

hot-cathode discharge regime was first presented by Langmuir [11] as:

ξ(η) = ±
∫ η

0

(

et − 1∓ et Erf(t
1

2 )± 2t
1

2

π
1

2

)− 1

2

dt (4.1)

where the dimensionless variables η and ξ and the Debye length λ are defined as:

η =
eΦ

kT
, ξ =

x

λ
e−

ηc
2

λ =

√

ε0kT

2n0e2

(4.2)

The error function is defined as:

Erf(x) =
2

π
1

2

∫ x

0

e−t2dt (4.3)
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4.2 Semi-approximation solutions

Martin and Donoso [12] derived an equation for an approximation of the potential

profile inside the diode on the right-hand side from the potential minimum (positive

values of ξ in Fig. 4.1). Equation 4.4 gives excellent results compared to the exact

solution in equation 4.1 (see Fig. 4.2):

ξ+(η) =
2
√
2

3
π

1

4

[

(

η
1

2 + r1

)(

η
1

2 + r21

)
1

2 − r1r2

]

(4.4)

where the constants p0, r1 and r2 are defined as:

p0 =
2

π
1

2

[

1−
(

1− π

4

)
1

2

]

r1 =
(

3− π
1

2p0

)

p0

r2 =
1

2
1

2

π
1

4p0

Jelić [61] presented an approximate solution for the left-hand side from the po-

tential minimum (negative values of ξ on Fig. 4.1) and provided the missing part

for a full description of the potential profile with approximation methods:

ξ−(η) =

[

q0
π

1

2

√
2
Erf

(

η
1

2

√
2

)

+Dn(η
1

2 e−
η
2 )− d0

]

(4.5)

where

Dn(η
1

2 ) =
n
∑

i=1

diη
1

2

A comparison of the results from the approximation solution to the Langmuir

(equation 4.1) and the simulation results would be practically impossible without

following an inverse approximate solution:

η+NJ(ξ) =

(

ξ

2

)
3

2

Erf

(

ξ
1

2

√
2

)

η−NJ(ξ) =
ξ

3

4

Erf(1
2
(ξ +D)

1

2 )

(4.6)

where the constants D = 2.5533. Erf(), ξ and η are defined in equation 4.2.

4.3 Simulations

The simulations were performed using the Particle-In-Cell (PIC) and grid-free treecode

simulation code (PEG-TC) on three simulation cases. Each simulation case had dif-

ferent cathode voltages, different minimum potentials and a grounded anode and a
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vacuum inside the diode. The particles were electrons with a Maxwellian distribu-

tion, temperature T = 1eV and without an initial velocity (v0 = 0). The diode’s

cross-sectional area was A = 10−4m2.

The distance d between the diode electrodes (the system walls) depends on the

selected potential minimum and the applied voltage at the cathode. To be able to

compare the simulation and theoretical results, the distance d was computed for

each simulation case using the universal exact potential profile solution shown in

Fig. 4.2. The values for the selected parameters (potential, voltage and distance d)

are presented in table 4.1.

Case Φmin Vc d d
1 3V -5V 8.344 ξ 1.8935 ·10−5m
2 6V -20V 20.251 ξ 9.23 ·10−4m
3 10V -24V 23.677 ξ 5.892 ·10−2m

Table 4.1: Simulation case parameters.

4.4 Results

First, we compare the agreement of the exact and the two approximation methods

for the theoretical potential profile and the results are shown in Fig. 4.2. The figure

shows excellent agreement between the exact method and the approximations in the

selected range of ξ. Asymptotic behaviour on the left-hand side of the potential

minimum is clearly seen.

For the case with a high potential difference between the cathode and the anode,

potential profile comparisons from the exact method and the two simulation codes

(PIC and TC) are presented in Fig. 4.3. It is clear that the PIC method does not

give accurate results in the areas to the left of the potential minimum (negative

values for ξ). Both simulation methods show an agreement with the exact solution

in the area just to the right of the potential minimum (positive values for ξ).
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4.4 Results

Figure 4.2: Universal potential profiles acquired from exact (equation 4.1) and ap-
proximate methods (equations 4.4, 4.5 and 4.6).

Figure 4.3: Comparison of simulation results acquired with PIC and TC methods
with the exact solution (equation 4.1) - potential profiles for case with high potential
difference between cathode and anode.
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Chapter 5

PIC simulations on the
plasma-sheath boundary in
collisionless plasmas with warm
ion sources3

Finding and defining the plasma-sheath boundary (also called the “plasma edge”,

“sheath edge” or “sheath entrance”) is a problem of ubiquitous relevance and im-

portance in plasma physics. In a conventional approach, this problem starts from

Poisson’s equation (2.6) with assumptions that: (i) the electron density distribution

is a known function of the local potential, (ii) the ion source velocity distribution is

known, and (iii) the potential profile is monotonic. The basic unknown quantities of

the problem to be determined are the spatial potential profile Φ(x) (or, equivalently,

the electric-field profile) and the final ion velocity distribution function (ion VDF)

fi(Φ, v) at any location of the discharge (or, equivalently, for any potential), where

x (position) and v (velocity) are the usual phase-space diagram coordinates. Math-

ematically, this problem is defined by a coupled set consisting of the Boltzmann and

Poisson equations, which in plane-parallel geometry (i.e., for the considerations of

the present work) read as:

v
∂fi
∂x

− e

mi

dΦ

dx

∂fi
∂v

= Si(x, v) (5.1)

∫ ∞

−∞

fi(Φ, v)dv = ne(Φ)−
ε0
e

d2Φ

dx2
, (5.2)

with e the positive elementary charge, mi the ion mass, ε0 the vacuum dielectric

constant, and Si(x, v) the ion source term. The problem is closed, provided that the

boundary conditions are well defined.

3Original/full text was presented in [59]
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A formal solution of equation (5.1) is

fi(Φ(x), v) =

∫

Φ′

dx′

dΦ′
κ(Φ,Φ′, v)dΦ′ (5.3)

where

κ(Φ,Φ′, v) ≡
Si

(

Φ′, v2 − 2e

mi

(Φ′ − Φ)

)

√

v2 − 2e

mi

(Φ′ − Φ)

(5.4)

so equation (5.2) takes the form of an integro-differential equation

∫

Φ′

Ψ(Φ′)K(Φ,Φ′)dΦ′ = ne(Φ) +
ε0
e

dx/dΨ

|Ψ|3 (5.5)

where

K(Φ,Φ′) =

∫

v

κ(Φ,Φ′, v)dv (5.6)

is the known kernel of the integro-differential equation, if Si is prescribed. The

unknown function to be found from equation (5.5) is the negative value of the

inverse electric field Ψ ≡ dx/dΦ ≡ −1/E. Once this quantity is found the ion

velocity distribution fi(Φ(x), v) from equation (5.3).

Solving the above problem is a very demanding task, even with present-day

numerical methods and computational resources. The first difficulty arises when

choosing a particular source function, which has to be physically meaningful and

at the same time amenable to analytic or numerical integration for obtaining the

kernel. For the “regular” case of “warm” ion sources (when ions are generated with

a distribution of finite initial velocities), the kinetic problem formulated above is of

such complexity that it was never solved for the whole discharge region.

5.1 Defining the position of the plasma-sheath bound-

ary

In 1929, Tonks and Langmuir [62] triggered this kinetic problem with a “cold”

(“singular”) ion source distribution, i.e., all the ions are generated with a zero initial

velocity (v0 = 0). Mathematically speaking, the ion source distribution in their

model was defined as:

Si(x, v) = si(Φ)δ(v) (5.7)

δ(x) =

{

∞ x = x0

0 x 6= x0

(5.8)
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where δ is the well-known Dirac δ function. However, at that time the problem

of dealing with the complete “plasma and sheath equation” still appeared to be

too difficult, as Tonks and Langmuir termed the model. In our terminology, they

felt able to deal only with ε → 0 plasmas, but not with finite-ε ones, where the

smallness parameter ε is defined as ε ≡ λD/L, with L the pre-sheath (plasma)

characteristic length and λD ≡
√

ε0kTe/nee2, the electron Debye length. It is well

known that the plasma state is defined for ε ≪ 1, otherwise the ionised system is

not a plasma, but just an ionised gas unable to establish quasi-neutrality. Tonks

and Langmuir employed the condition ε → 0 (“asymptotic two-scale limit”), i.e.,

neglecting the term originating from the second derivative of the potential. In this

way they obtained the nowadays famous “plasma equation”, which holds in the case

of strict plasma quasi-neutrality. They solved the plasma equation using an analytic

expansion method.

Harrison and Thompson, however, found an exact analytic solution for that in

1959 [63]. Furthermore, a rigorous mathematical formulation of the asymptotic

two-scale plasma and sheath problem was given in 1962 by Caruso and Cavaliere

on the basis of boundary-layer theory. Self in 1963 [18], on the other hand, solved

the one-dimensional “plasma and sheath equation” numerically without splitting

the discharge into the plasma and the sheath regions. One important consequence

emerging from his work is that, for finite-ε, the plasma-sheath boundary is a rather

arbitrary concept from the academic point of view but that, anyway, it is important

to define it for practical purposes. The only situation for which the plasma-sheath

boundary is unambiguous is the asymptotic, two-scale limit (ε → 0), in which case

it is defined by the famous Bohm criterion, which was originally obtained in 1949

by using a simple fluid model [26].

This criterion was upgraded to another famous formulation [63] known as the

Harrison-Thompson plasma-sheath criterion (frequently also referred to as the gen-

eralised Bohm criterion), which is valid for arbitrary electron and ion velocity dis-

tributions. The Harrison-Thompson criterion for the case of Maxwellian distributed

ion sources with non-negligible temperatures was confirmed explicitly by Bissel and

Johnson [64] and Scheuer and Emmert [65]. Physical interpretations of this criterion

were given in both fluid [66] and kinetic treatments [67]. There the plasma-sheath

transition was interpreted as a surface where slow perturbations (ω/k → 0) origi-

nating from the sheath region are incapable of penetrating into the plasma.

In particular, it would be of great importance to unify the plasma and sheath

descriptions for various discharge scenarios with finite ε. One way to do this is

to find some universal rules that hold for the whole discharge region, i.e., some

kind of “similarity variables” that reduce the dimensionality of the problem. This

task has already been partially performed for plasmas modelled in the fluid [68]
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and kinetic [69] approaches by using solutions that hold in the intermediate plasma

region to match together the plasma and sheath solutions obtained in the asymptotic

two-scale approach. While these scalings are well confirmed in both fluid and kinetic

models with cold ion sources, scalings in kinetic models with warm ion sources were

just predicted (see, e.g., [70, 71]) on the basis of rather general kinetic considerations,

but never confirmed explicitly due to a lack of appropriate analytic and/or numerical

solutions for the intermediate region.

From the practical point of view, unifying the plasma and sheath descriptions

is frequently not of primary importance, but on the contrary distinguishing the

plasma and the sheath regions is the issue at hand. In particular, for simulations

of the Scrape-Off Layer (SOL) regions in tokamak devices with fluid codes (like,

e.g., SOLPS and EDGE2D [72]) it is necessary to define the boundary conditions at

the quasi-neutral plasma edge and not at the wall. The investigations of [73] and

[74] indicate that the plasma-sheath boundary can be identified using the concept

of the “local polytropic coefficient” γ(x), which exhibits a characteristic kink-like

behaviour at the transition between the quasi-neutral pre-sheath plasma and the

non-neutral sheath. The ability to define γ enables a reliable calculation of the ion

sound velocity cs(x) =
√

(kTe + γkTi)/mi. It will be shown here how to find the

plasma-sheath boundary and also the place where the ion sound velocity, with such

a calculated ion polytropic coefficient, equals the ion fluid velocity.

5.2 Numerical (PIC) simulation

PIC (Particle-In-Cell) simulations were performed using the PIC simulation program

BIT1, that has a special feature: it is capable of maintaining the electron velocity

according to a Maxwellian distribution in the region of quasi-neutral plasma, even

in the absence of collisions - just like in real experiments.

The initial (source) velocity distribution of both electrons and ions is Maxwellian.

Electrons are “born” (added/injected to the system) with a fixed temperature

Te,src = 1eV (index “src” means “source temperature”), while the ion initial temper-

ature Ti,src is changed in simulations, and representative results with equal electron

and ion source temperatures are shown. In our simulations the electrons and ions

are injected into the simulation domain in pairs, with injection positions randomly

distributed over the simulation volume. After a steady state is established, the

electron velocity distribution remains Maxwellian with a cutoff in the tail of the

velocity distribution. The position of the cutoff of the electron VDF depends on

the local plasma potential. However, this cutoff of the tail does not have a seri-

ous influence on the electron temperature, which is very close to 1eV in the steady

state. On the contrary (as will be seen below), the final ion velocity distribution is
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5.2 Numerical (PIC) simulation

far from Maxwellian-like, in spite of the fact that the ion source distribution is also

Maxwellian. In any case, the cutoff is an inherent result of the simulation itself and,

unlike the theoretical models where it is usually ignored, it would be hard to avoid

this effect (e.g., for the purposes of fitting some theoretical models).

The system of research is defined as a one-dimensional plane-parallel system with

the electrodes positioned as shown on Fig. 5.1. The distance between the electrodes

is L = 0.03m and the inner-space is divided into 8192 cells. The simulations were

performed with the enhanced and updated BIT1 (Berkeley-Innsbruck-Tbilisi) 1D

simulation code [54]. The plates at x ± L/2 are assumed to be perfect absorbers

and electrically floating. The profile of the electrostatic potential Φ(x) is assumed

to be monotonic, decreasing for x > 0, and is defined to be zero at x = 0, that is

Φ(0) = 0.

Φ(  )x

+L/2−L/2

Φ

x

Φ(0) = 0

Figure 5.1: The geometry of the system with the position of the coordinate system
and a sketch of the potential profile.

5.2.1 Changing the ion source profile during the simulation

The currently available version of BIT1 does not offer the possibility to change the

ion source profile during the simulation. It is possible to define the ion source profile

at the beginning of the simulation in the form of the input file, but not during the

simulation. When new electrons are born, their position is selected randomly in the

source area (which was in our case the whole system, from x = −L/2 to x = L/2,

see Fig. 5.1). To “upgrade” BIT1 and to include the possibility to take into account

the ion strength profile in the current simulation step, it was decided that the ion

strength profile would be computed as

Si(x) = eαΦ(x) (5.9)

where Φ(x) is the potential and α is the source strength factor.
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The idea is that with a larger value of Si(x) in a given grid cell (at the position

x), the probability that an electron is born in that cell is also larger. The easiest way

to achieve this is to calculate the area below the function (presented in equation 5.9,

see Fig. 5.2) and then use the calculated value in a function that defines (randomly

selects) a new electron position. Because the integration is done numerically with a

known grid in the direction x, the calculated area can also be expressed as a strip

that is ∆x wide and L
′

total long. Here, ∆x is the distance between the grid points

(defined in simulation parameters) and L
′

total is the sum of all the lengths below

Si(x) for the whole system (equation 5.10 and Fig. 5.2).

L
′

i = eαΦ(i) L
′

k = eαΦ(k)

L
′

total =
N
∑

i=0

L
′

i =
N
∑

i=0

eαΦ(i)
(5.10)

where N is the number of grid cells. The steps in computing the new particle-

insertion position, i.e., the grid cell, are:

• select random value between 0 and L
′

total and mark the value with L
′

sel,

• check the condition presented by equation (5.11) for each grid cell

L
′

i−1 < L
′

sel <= L
′

i (5.11)

where i is the grid-cell index from 1 to N and

• the first cell (defined with the grid cell index i) for which the condition in

equation (5.11) is true, it is the grid cell for new particle.

k ∆ x

iL’

kL’ αΦ(  )xS (x) = ei

Si

i x

Figure 5.2: Graphical representation of how the area under function is calculated
and divided into strips. The total length of the strips (L

′

total) is used as the upper
limit from which new particle positions are randomly selected.
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New particles are injected (added) to the system at every simulation step, which

includes computing the injection position of the new particles. With this, calculating

the value of L
′

total and defining the grid cells for the injected particles is performed

for each simulation step. The “updated” BIT1 could perform worse compared to

the “original” BIT1 because of the extra computing performed and the comparison

of the simulation running time, and their difference is presented in Chapter 5.3.3.

5.3 Results

5.3.1 Influence of strength factor α on the particle distribu-
tion

The influence of strength factor α (equation 5.9) on the electron and ion distributions

was tested for five cases, as presented in table 5.1. Fig. 5.3 shows to what extent the

electrons and ions remain Boltzmann distributed during the simulation in relation to

the potential. A logarithmic scale presentation was used for a better representation

of the respective densities n01 - n05, as defined at the plane of symmetry. Note

that the reference potential Φ = 0 in this presentation is taken in the middle of the

system and the wall is at the right-hand side (Fig. 5.1). Straight lines with the same

slope (slopes correspond to the electron temperature and are constant, independent

of the plasma density) fit these curves well, at least in the plasma core, i.e., for small

values of the potential.

Fig. 5.4 illustrates the ion velocity distributions obtained for the case when the

source velocity distribution of both electrons and ions is Maxwellian. While the

electron final velocity distribution remains Maxwellian, the ion final velocity distri-

bution in the steady state was predicted to dramatically change in the whole volume

[64, 65].

Case n at L/2 λD ε
1 2× 1014 m−3 5.27× 10−4 3.513× 10−2

2 1.08× 1015 m−3 2.27× 10−4 1.513× 10−2

3 2.2× 1015 m−3 1.58× 10−4 1.053× 10−2

4 1.14× 1016 m−3 7× 10−5 4.76× 10−3

5 1.15× 1017 m−3 2.2× 10−5 1.47× 10−3

Table 5.1: Plasma densities (at the plane of symmetry of the discharge), Debye
lengths at the centre of the plasma and the corresponding smallness ε-parameters
used.
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Figure 5.3: The electron density profile on a logarithmic scale as a function of the
local plasma potential Φ as normalised to the electron temperature.

Figure 5.4: Velocity distribution as a function of the distance from the centre for the
case of the smallest density that was simulated (i.e., ε = 3.513× 10−2). The shape
of the velocity distribution at the plane of symmetry of the system is compared with
with the results obtained by Scheuer and Emmert.
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Fig. 5.5 shows the ion temperature profiles and the corresponding local values of

γi for various ε as functions of the normalised local plasma potential. This is a very

important picture for understanding the behaviour of ions near the plasma-sheath

boundary and in the sheath as well. Namely, there is clear evidence that γi has

a maximum in a wide range of ε. In fact, this maximum is the only observable

characteristic point in the full-scale model. From the mathematical point of view it

corresponds to the place where the ion temperature has an inflection point. From

the physical point of view these maxima correspond to the place where the ions
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Figure 5.5: The ion temperature profiles (a) and the corresponding local values of
γi (b) for various ε as functions of the local plasma potential. It is evident that the
maximum of γi is strongly dependent on the value of ε.
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become strongly accelerated towards the wall. This implies that the electric field

gradient is the strongest here. Unlike the cold-ion source models, in the warm-ion

source model this place does not coincide with the place where the so-called marginal

Bohm criterion holds. It turns out to be a better measure of the unknown plasma-

sheath boundary Φs − xs than the place of the marginal Bohm criterion, as taken

from the two-scale approach.

Note that the ion temperature increases in the sheath (next to the point of the

temperature inflection) maximum of γ, as we approach the wall. This is a common

feature in both cold and warm ion sources models, confirmed both in numerical solu-

tions and computer simulations [see also 74]. This has a simple explanation that in

the full-scale approach (both plasma and sheath regions) the ions are created in the

sheath in a wide range of local sheath potentials, so the final velocity distribution

and the corresponding ion temperature depend strongly on the sheath width. The

ion temperature in the sheath is wider as the sheath is thicker (increased ε). How-

ever, this mechanism fortunately does not “mask” or “delete” the inflection point

of the ion temperature, at least in the collisionless plasmas that we are considering

here.

Nevertheless, we consider our results rather reliable for determining the plasma-

sheath boundary based on the theory of [73]. The so-called “sonic point” has to be

found for the known local ion polytropic coefficient, determining the local ion sound

velocity. Then one has to find the point where the ion sound velocity equals the ion

average directional velocity towards the physical plasma boundary. This method is

illustrated in Fig. 5.6 for various plasma densities. Once the potential Φs is known,

the remaining task is to find the location corresponding to such a potential for each

particular density. We show in Fig. 5.7 the method for determining the plasma

sheath’s physical locations x from simulated Φ(x) curves with values Φs determined

from Fig. 5.6.
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5.3 Results

Figure 5.6: Determination of the plasma-sheath potential as a point in which the
ion fluid velocity ui equals the ion sound velocity

√
1 + γTi.

Figure 5.7: Illustration of the method for determining the plasma sheath physical
locations from Φ(x) curves with values Φs determined from Fig. 5.6.
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5.3.2 Influence of the strength factor α on the particle dis-
tribution

As stated before, both electrons and ions are born with a fixed temperature Te,src =

Ti,src = 1eV . The first simulations were performed with α = 0 (“flat” ion source

profile) and the potential profile was compared with the potential profile obtained

by Scheuer and Emmert (S&E), as shown in Fig. 5.8. Fig. 5.8 shows surprisingly

good agreement, in spite of the fact that S&E claimed that their theoretical curve

was obtained with α = 1. The difference is obvious only in the sheath region, where

the PIC method is superior in the sense that the PIC method also describes the

sheath region in addition to the quasi-neutral plasma.
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Figure 5.8: Comparison of our PIC simulation results with the results of Scheuer
and Emmert.

Now we compare our PIC simulation results obtained using α = 1 with theory,

developed in [57]. The theoretical potential profile utilises the limit value for ε:

ε = 0. With this in mind, the theoretical results are valid for plasmas with small

values of λD and very high densities. Because in the PIC simulation ε is small, but

not 0, the density is always limited and can never be as high as in theory. Fig. 5.9

presents a comparison of the potential profiles resulting from PIC simulations and

theory for the same source term Si ≈ eΦ. It is shown that in simulations with

higher densities, the potential profile is approaching the theoretical potential profile.
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5.3 Results

This suggests that running simulations with very high densities, potential profiles

from both the theory and simulation would coincide. That would require huge

computational resources or even better, some kind of multiprocessor (OpenMP or

MPI) version BIT1 that is capable of utilising all the available memory and CPUs in

clusters. Of course, the OpenMP version would be used for running the simulation

on “smaller” crunching machines (machines with multiple processors and multiple

cores per processor), the MPI version would be used on “big” computing clusters

with a large number of nodes.
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Figure 5.9: Comparison of the potential profile from PIC simulations and theoretical
results.

5.3.3 Comparing running times of two BIT1 versions

When compared to the original BIT1 simulation (Si = const), the PIC simulation

in the updated BIT1 code (Si ≈ eΦ) requires some additional computation time

for integrating Si and defining the grid cell for injected particles. The purpose

of the comparison was to check how much these additional features add to the

total simulation computer time. The compared simulations were the same in all

parameters (initial conditions, temperatures, system geometry and dimensions, etc.),

except for the ion source strength profiles: one being constant and the other with

a profile proportional to Φ. The simulations were stopped after 1 × 106 simulation

steps and were only run to compare the simulation times (not part of any other

simulation and at stop time they were not even close to the steady state). Fig. 5.10
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shows the difference in the simulation times that were recorded every 4096 simulation

steps, which is the frequency of writing dump and data files in BIT1. Although

the computation of the ion source strength values takes some additional time in

every simulation step, one can observe from Fig. 5.10 that the ion source strength

profile does not influence much on the overall simulation time and can be neglected

compared to the overall simulation computation time. The average difference in

computer times is around 1.5% and stays constant even with a larger number of

simulation steps.
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Figure 5.10: Comparison of simulation computer times needed to run for various
simulation steps for Si = const and Si = eΦ(x).
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Chapter 6

Gradients in a gas-filled diode
during electrical breakdown4

In comparison to pure DC discharges in the steady state, the transition stage leading

towards a breakdown situation is an even harder problem to solve. Problems involv-

ing transition stages are relatively purely investigated via kinetic codes, especially in

cases when extremely dense plasmas are present. This was the main motivation for

doing an investigation with a particular scenario of the discharge ignition using an

ideal DC current generator. 2D simulations [75] were made using the 2D simulation

code XOOPIC, which is based on the 2D Particle-In-Cell (PIC) method with the

included Monte Carlo Collision (MCC) method [76] (Fig. 2.1).

The simulations are essentially based on solving a self-consistent system of New-

tonian equations for a system of particles, with each particle defined by the index i,

at positions ~ri:

mi
~̈ri = ei[ ~E(~ri, t) + ~̇ri × ~B(~ri, t)] + ~Fi, (6.1)

with i = 1, 2, . . . , N (N is number of particles) and the total electric ( ~E) and mag-

netic ( ~B) fields acting on a particle i [77] defined as:

~E(~ri, t) = −
[

∇Φ(~r, t) +
∂ ~A

∂t
(~r, t)

]

~r=~ri

(6.2)

~B(~ri, t) =
[

∇× ~A(~r, t)
]

~r=~ri
(6.3)

4Original/full text was presented in [36]
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Gradients in a gas-filled diode during electrical breakdown

with:

Φ(~ri, t) =
1

4πε0

N−1
∑

j=1

ejδ(~ri − ~rj)

|~ri − ~rj|
(6.4)

~A(~ri, t) =
1

4πε0c2

N−1
∑

j=1

ej~̇rjδ(~ri − ~rj)

|~ri − ~rj|
(6.5)

The flowchart for numerically solving the above equations is shown in Fig. 2.1 [78],

which, together with the proper boundary conditions (BCs), represents a fully self-

consistent approach. However, a universal implementation of the approach is a

difficult task and the approach that neglects the magnetic vector potential ~A is used

here with an evaluation of its possible importance a posteriori.

6.1 Numerical simulation parameters

Starting with the assumption that in a small chamber (diode) containing neutral

gas atoms of density na ∼ 1023 there could be sufficient ionisation to yield an ion-

current density (of single ionised ions) j = eniui ∼ 108A/m2 (with a characteristic

for a cold non-isothermal plasma with Te ∼ 1eV ≫ Ti ion velocity ui, caused by

ambipolar flow at the plasma edge, of the order 104). From an engineering point

of view this is represented by a small, disk-shaped plasma volume of the order

of VD = SDLD ∼ 10−6m3 with an inner-electrode distance of the order of one

millimetre. In the steady state, the maximum ion current in such cases can be

estimated to be of the order of I ∼ 102A. Of course, it could be considerably higher

when either the ion-directional velocity is much higher or during the periods when

the currents consist only of electrons.

The simulations were performed with a constant DC current (option GC on

Fig. 1.1) the value of which is much below the value stated above. The reason for

such a current value selection is that the idea was to obtain a DC regime, even if

the ionisation degree is as small as 10−3. The computational domain is presented in

Fig. 6.1 and a system with the coordinate system is displayed in Fig. 6.5. As shown

in Fig. 6.5, the system is a disk-shaped (azimuthally symmetrical about z) gas-filled

diode with the following parameters: disk diameter dD = 1 cm, inner-electrode

distance LD = 1 mm and biased electrodes at a constant external current-generator

I = 0.01 A. The external resistivity, inductance and capacitance are neglected. A

small number of initial electrons and argon ions are created in a basic argon gas

background at a pressure that is sufficiently high (4 Torr) to initiate an electron

avalanche. The anode (A) is grounded, while the initial cathode (C) voltage is

VC = −1000 V. Each ion reaching the cathode is neutralised there and during its

impact with the cathode, a new (secondary) electron will be delivered (with a certain
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Figure 6.1: Number of electrons (first column) and ions (second column) during
several characteristic moments (times) of the discharge development. Due to the
azimuthal symmetry only the upper half of the disk cross-section in the central z−r
plane is shown and the system is visually stretched in the z-direction for a better
visual resolution of the obtained results.
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probability, typically 0.2) and accelerated within the plasma sheath into the diode

gap, performing there its own avalanche.

The simulation results in Fig. 6.1 are presented by plotting the ”snapshots”

(images capturing particle positions in the system at a given time) of electrons (first

column) and ions (second column) during several characteristic moments t1 - t5 of the

discharge development, as indicated in Fig. 6.2a. Fig. 6.2a displays the total number

of ions and electrons originating from the volume ionisation as a function of time.

Secondary electrons are mainly delivered from that localised part of the cathode

that is most frequently impacted by ions originating from the nearest local plasma-

bunch. Such a ”normal” situation appears after the discharge reaches the time t1,

when the ion-rich plasma ”attacks” the cathode. Then the cathode ”spot” spreads

over the cathode (times t4, t5 and later). Before that time, strong electron and ion

particle current bursts can be obtained. Since the total external current I = 0.01A

should be conserved it follows that extreme displacement currents play a role that

compensates the particle (conductive) currents. Unlike 1D simulations [79] where

the displacement currents are aligned in one direction [80], in the present situation,

obviously, internal electric and kinetic 2D effects, field-particle-field interaction, play

a special role. Namely, it is expected from the trend of currents and fields that a

steady-state situation is established during a characteristic ion-flight time, which

can be estimated from t ∼ dD/ui to be of the order of 10−7s. It should be noted

that with so many particles in the system, such a time (for reaching the steady-state)

would be difficult to reach using the present method and reaching the steady state

exceeds the scope of the present investigation.

6.2 Results of numerical simulations

At each time step during the simulation run, a huge number of relevant data (results)

are saved into “dump” files for post-processing. It is clear from the time-history in

Fig. 6.2 that there are stages in which the electron or ion dynamics dominates the

diode’s internal behaviour, while the external circuit at that stage temporarily does

not play an important role (could be temporarily disconnected). The same holds

for the secondary electrons. Namely, the total ion current at the diode plates, after

time t1 is of the order of 103 ≫ I = 0.01A. The same as with the internal local

potential at time t2, where its value is of the order of Φ ∼ 106V , which is even

considerably above the diode bias voltage (VCathode ∼ 105V ). An instant power

accumulated within the diode gap during the ion-dominated current stage (t2) is

thus of the order of several GW . During the ion-dominated stage (i.e., t1 < ∆t < t3,

approximately 0.5ns) the energy stored within the plasma can be crudely estimated

to be of the order of 1 Joule.
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Figure 6.2: Total number of ions and electrons (a), ion and electron conduction elec-
tric currents to cathode and anode (b), cathode potential (c) and total conduction
electric current at electrodes.

Since the order of magnitude of the above quantities is known, it is necessary to

perform a detailed analysis of the “macroscopic” behaviour of the relevant quanti-

ties, i.e., the moments of the velocity distributions (densities, average random and

directional velocity components and related fluxes, energy and heat fluxes compo-

nents, and the distribution of the scalar and vector fields components). Here, it is

necessary to first look into the distributions of the electrostatic field values (Fig. 6.3),

presented via its radial Er(r, z) and axial Er(r, z) component distributions, at times

t3 and t4.

For estimating the displacement current density distributions defined as

jD,z = ε0
∂Ez

∂t
(z, r, t) and jD,r = ε0

∂Er

∂t
(z, r, t)

a crude (post-processing) approximation

jD,r,z(z, r) = ε0
Er,z(z, r, t4)− Er,z(z, r, t3)

(t4 − t3)

and the values of the displacement current distributions from Fig. 6.3 were used.

The results plotted in Fig. 6.4 show that the local magnitudes of both the radial

and axial displacement current densities take values of the order of 107A/m2. Since
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Figure 6.3: Profiles of electric fields Er(z, r, t) (first column) and Ez(z, r, t) (second
column) at times t3 (first row) and t4 (second row).

the characteristic diode surface is of the order of 10−4m2 it turns out that local

displacement currents of the order of 1011A could be recognised as high as the

conduction currents diagnosed at the boundaries.
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Figure 6.4: Estimation of radial and axial displacement current density distributions
ε0∂Er(z, r, t)/∂t and ε0∂Ez(z, r, t)/∂t in (z, r)-plane, done within the time-interval
from t3 to t4.

The described estimations demonstrate explicitly the same orders of magnitudes

of conduction and displacement and indicate that the simulation results may per-

fectly satisfy the electric current continuity∇(je+ji+ε0∂Er(z, r, t)/∂t) = 0 through-
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6.2 Results of numerical simulations

out an arbitrarily small (in the numerical sense) closed surface, i.e., that there is

no reason to doubt that the results and related phenomena are globally physically

correct, up to an arbitrary constant ∇(I/SD) where I is in this case our external

current.

However, inside the diode the three currents from the continuity equation could

be in principle distributed over a surface in infinite numbers of detailed variations.

The presented example, however, does not seem to be quite arbitrary. Namely,

the shape of the radial displacement of the current density in Fig. 6.4 (left-hand

graph) is obviously a rather well localised torus and it is not immediately evident

with which component of the conduction current the continuity is satisfied. At the

moment we can only plot our estimated ε0∂ ~E(z, r, t)/∂t vector field (Fig. 6.5), indi-

cating an instant converging of the huge displacement current towards the toroidal

axes. For satisfying the continuity current over an arbitrary surface with each posi-

tion of the torus a complete phase-space information of particles should be extracted

and post-processed, and it does not seem that the available PIC codes are properly

equipped for this task. In any case, the presented simulation clearly indicates that

a rather well self-organised torus-like global plasma-structure has some influence on

the simulation, through which parameters and to what extent is a task for future

research.
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Figure 6.5: Approximate ε0∂ ~E(z, r, t)/∂t vector-field (between times t3 and t4).

64



Chapter 7

Discussion and conclusion

This thesis presents an overview of the existing research on diode systems and the

author’s own research on the possibility of using the gridless treecode method in

diode-systems research. The gas-discharge systems that are presented as part of

the research in this thesis can be distinguished by many physical parameters, with

the most important ones being: system geometry, layout of the external circuit,

working media (type of gas), working regime (pressure and temperature), surface and

volume processes (primary and secondary emission, ionisation, elastic and nonelastic

collisions of ions, electrons and neutrons) and gas ionisation level.

The main objective of the thesis was to research conditions that enable the cre-

ation of a virtual cathode in diode systems. The virtual cathode generally does not

appear at the same position as the physical cathode and its appearance depends on

the primary heating (emission) or secondary processes, such as a strong electric field

(Fowler-Nordheim effect) or ion neutralisation on the cathode. The exact conditions

for the virtual cathode’s appearance differ from various diodes and are influenced

by the diode’s main usage. The research was focused on diode use where the plasma

is formed in the diode, either intentionally or due to the “failure” of the diode when

an external gas breaks into the system. A large number of simulation-parameter

combinations can result in the formation of a plasma in the system and from all

possible combinations, the following most common scenarios are presented in the

thesis: diode with a vacuum inside (zero-pressure system), a noncollisional plasma

(relatively low-pressure system) and a gas-discharge tube (relatively high-pressure

system). The model of the discharge tube with different gas pressures, either with of

without the presence of a plasma in the system, was used to conduct the research on

these three scenarios. In the majority of cases the steady state is not achieved, but

we can observe oscillations of the volume distributions for most parameter combi-

nations, which are also transferred to an external circuit. These oscillations are the

result of a virtual cathode forming, and the simulation results show that the kinetic-
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simulation codes used in simulations are not able to amply describe the transient

states of the system. This is even more clearly presented in systems where a plasma

is present. For kinetic-simulation codes based on the Particle-In-Cell (PIC) method,

one has to use more fine computational grids to adequately describe the simulation

quantities (states) in areas where high gradients are present, which eventually re-

sults in longer simulation times. To overcome the limitation of the PIC method, a

new gridless treecode (TC) method is presented. It was already used and proven in

other fields (e.g., astronomy), but is relatively new in the field of charged-particle

simulations.

The thesis includes four simulation cases in total, where the first two cases present

a comparison of the PIC and TC methods for various simulation cases and system

configurations, the third case is focused on defining the plasma-sheath boundary

and the fourth case on a more complicated geometry (2D system) and high gra-

dients. The first comparison of the PIC and TC methods was made in a vacuum

system without ionised gas or plasma and with diode electrodes at the same po-

tential (shortcut diode). A comparison of the results from both methods shows a

good match and the treecode method presents a good alternative for the currently

widely used PIC method. The second comparison was made in a geometrically sim-

ilar system, but with biased electrodes having an arbitrary (and variable) potential

difference between the electrodes, and with thermal emission of the particles from

the cathode. The results of both methods are compared with the results of the

theoretical (semi-approximative) method and show a good match in areas with low-

profile gradients. In areas with high potential gradients, a comparison of the results

shows a discrepancy between the PIC and TC results. Surprisingly, the results of

the TC method show some nonlinearities in the potential profiles in areas with low

potential gradients, for which there is no explanation at the moment.

The third case presents a system where a sufficiently high particle ionisation

causes the formation of a collisionless plasma via a complicated scenario that could

be observed only in the transient regimes. The theoretical model is also complicated

and only an approximative model is available. The focus of the research was on

defining the position of the boundary between the plasma (the middle of the system)

and the sheath (the narrow zone at the system wall). Defining the position of the

boundary is a rather important task as it represents the boundary condition for

simulations of the core of the system, which is usually done with fluid-simulation

codes, and a plasma sheath, which is usually done with kinetic-simulation codes.

The last case presents a more complicated system in the geometrical and physical

sense - a highly collisional plasma in a 2D system, where the steady state was

not reached due to the large number of particles in the system. The simulations

were performed using the 2D PIC simulation code XOOPIC and the results show

the presence of extremely high gradients of plasma quantities (e.g., ion density, see
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Fig. 6.3). Because the PIC method requires dense grids to describe areas with a

high gradient of plasma quantities, the simulation should be performed again with

the TC method to compare the results from both the PIC and TC methods.

Simulations with the grid-free treecode (TC) method were made using what are

basically development versions of the simulation codes that were written specifi-

cally for research on the usability of the TC method for plasma-related simulations.

Nevertheless, the simulation results show good agreement with existing and already-

proven PIC codes, and also with the theoretical results. The results presented in

the thesis indicate that the TC method could be used as an alternative kinetics-

simulation method for plasma-related simulations (research) where high gradients

are present. This also opens up a wide range of possibilities for developing and

updating the simulation codes, either for 1D or 2D systems. The first step of this

development was already done with the TC method partially included into the 1D

simulation code OOPD1 and its Python-based version PyPD1, both developed in

The Plasma Theory and Simulation Group at Michigan State University. The results

also indicate that one development should proceed in the direction of improving the

description of the external circuits and self-adaptive boundary conditions, to name

just a few.
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Dodatek A

Slovenski povzetek

A.1 Uvod

Plašč plazme volumsko predstavlja majhen, vendar zelo pomemben del industrij-

skih, laboratorijskih ali fuzijskih plazemskih naprav, saj se v plašču dogajajo velike

časovne in prostorske spremembe parametrov plazme (električno polje, potenciali,

itd.). V magistrskem delu je za modeliranje plazemskega plašča in pogojev nastanka

virtualne katode uporabljen model planarne diode. S plinom napolnjene diode so

skupina naprav, ki je, kljub svoji enostavni sestavi, zgodovinsko gledano med najbolj

raziskanimi napravami. Zaradi zmožnosti delovanja v različnih obratovalnih režimih,

določenih z geometrijo sistema, uporabljen plin in parametere plina za polnitev ko-

more ter parametrov zunanjega tokokroga, plinski odvodnik ponuja veliko število

načinov uporabe: kot eden od osnovnih elementov v elektronskih vezjih, napravah

visokih moči, laserjih, proizvodnji novih materialov, vzdrževanju jedrskih reakcij pri

proizvodnji izotopov, proizvodnji curka nevtronov in ionov, itd. Napravo navadno

sestavljata dve elektrodi (plan- ali osno- paralelni), ki sta od zunanjih vplivov ločeni

s komoro v katero sta vstavljeni. Komora je napolnjena s plinom z določenim tla-

kom, ki je navadno veliko nižji od atmosferskega in ustvarja vnaprej določene pogoje

pod katerimi se dogajajo različni pojavi.

A.2 Izvleček vsebine

Procese in stanja v komori, napolnjeni s plinom ali plazmo, je možno popisati na dva

(glavna) načina oziroma fizikalna modela: kot tekočino (fluid model) ali kot množico

delcev (kinetic model). Računalnǐske simulacijske metode, in s tem simulacijske

programske kode, lahko za simulacije uporabljajo enega od naštetih modelov ali

kombinacijo obeh. Popis pogojev za nastanek navidezne katode zahteva podrobo
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poznavanje zunanjih in notranjih procesov v danem sistemu, ki jih je možno določiti

le z uporabo simulacij s kinetičnimi metodami (kinetični simuilacijski programi).

Taki simulacijski programi (kode) so bili uporabljeni tudi za simuliranje v nalogi

predstavljnih primerov.

S primerom planarne diode v 2D (Slika A.3, predstavljena v sklopu zunanjega

tokokroga), ki predstavlja simulacijski model za simulacijo s plinom napolnjenega

plinskega odvodnika (npr. za protinapetostno zaščito), je bila predstavljena pro-

blematika nastanka in okarektirizacija premikalnih tokov znotraj diode. Predsta-

vljena je bila problematika različnih tipov zunanjega tokokroga in vpiv tokokroga

na različne delovne režime diode (Slika A.1). S prikazanim primerom, za simulacijo

je bila uporabljena simulacijska koda XOOPIC (kinetična koda za simulacije 2D

modelov), je bila prikazana zapletenost različnih delovnih režimov diode in potreba

po možnosti določitve idealnega tokovnega generatorja za potrebe simulacij. Tega

v trenutni simulacijski kodi ni možno preprosto nastaviti.
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Slika A.1: Predstavitev različnih delovnih režimov plinskega odvodnika.

V diodi nastanejo področja, kjer se pojavljajo veliki gradienti električnih polj, kar

predstavlja težavo pri uporabi metode Particle-In-Cell (PIC), saj mora biti računska

mreža za ustrezen popis stanja v teh področjih ustrezno gosta. S povečanjem gostote

računske mreže se, med drugim, podalǰsa čas računanja. Ena od rešitev “težave” z

gostoto mreže, ki je bila uporabljena v nalogi, je predstavljena (in uporabljena) brez-

mrežna metoda TreeCode (TC). Metoda TC temelji na uporabi drevesne strukture

zapisa položajev delcev v sistemu v določenem trenutku simulacije. Metoda pred

izračunom vrednosti v določenem simulacijskem koraku izdela drevesno strukturo
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trenutne razporeditve delcev v sistemu (od tod naziv metode treecode, Slika A.2) in

na področjih večje gostote v drevesni strukturi ustvari več vozlǐsč. S tem se poraz-

delitev delcev v sistemu popǐse bolj učinkovito in se tako zmanǰsa zahtevano število

računskih operacij z O(N2) (metoda z direktnim seštevanjem - direct summation

method) na O(Nlog(N)) (metoda TC).
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Slika A.2: Primer kvadratne računske domene (a) in predstavitev celic v drevesni
strukturi (slika iz [1]).

Bolj zahteven primer diode z visokimi gradienti in s primerjavo z znanimi te-

oretičnimi rezultati, je predstavljen s primerom termične emisije delcev s katode.

Izdelana in predstavljena je primerjava profilov potenciala, pridobljenimi s teo-

retično rešitvijo (Langmuir [11]), poenostavljeno aproksimativno rešitvijo (semi-

approximation method - Martin in Donoso [12], Jelić [61]) in rešitve simulacij z

metodo PIC (simulacijska koda BIT1) ter metodo TC ([44]). Ujemanje med rezul-

tati prikazanih metod je dobro.

V plazemskih sistemih plašč plazme predstavlja del sistema med jedrom plazme

in mejo sistema (steno naprave) in v katerem nastajajo največje spremembe para-

metrov plazme (npr. električnega polja ). Določitev meje med plazmo in plaščem

plazme je pomembno vprašanje za področje simulacij tokamak 5 naprav, saj omogoča

izračun vrednosti parametrov na meji in s tem določitev robnih pogojev za oba dela

simulacijskega območja, in sicer: (a) jedro naprave, kjer se navadno uporabljajo

modeli za tekočinski popis plazme (fluid model) in (b) plašč plazme, ker se za si-

mulacije uporabljajo kinetične programske kode (kinetic model). Prikazana je pri-

mejava izračunanega profila potenciala nadgrajene verzije programske kode BIT1 (s

funckijo izvora delcev Si = eαΦ(x) ≈ eΦ(x)), teoretičnimi rezultati [57] in originalno

programsko kodo BIT1 (s funkcijo izvora delcev Si = konst).

S primerom simulacije 2D sistema, kot je predstavljen v poglavju 6, je predsta-

vljen primer velikih notranjih premikalnih tokov. Uporabljeni simulacijski program

5’tokamak’ - okraǰsava ruskih besed toroidalnaja kamera magnitnaja katushka, ki pomenijo
toroidno komoro z magnetnimi jedri.
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Slika A.3: Predstavitev enostavne planarne diode z zunanjim tokokrogom.

XOOPIC omogoča simuliranje 2D sistemov s kinetično metodo PIC. Predstavljen

primer je zapleten tako z dimenzijskega (2D sistem) kot tudi fizikalnega stalǐsča, saj

obravnava visoko-kolizijsko (highly-collisional) plazmo z velikim številom delcev.

Stacionarno stanje pri tem primeru ni bilo doseženo zaradi zapletenosti primera in

nakazuje, da bi bila uporaba drugačne metode za primere predstavljenega tipa zelo

dobrodošla.

A.3 Sklepi

Naloga obravnava nastanek pojava virtualne katode v enostanih elementih (diode),

ki se v različnih velikostih in za različne namene, množično uporabljajo na velikem

številu področij - od elektronskih vezij do prednapetostne zaščite in elemetov v la-

serskih sistemih. Želja za popis pogojev nastanka navidezne katode je pomembna

tako s stalǐsča za preprečevanja njenega nastanka kot tudi za primere, ko se želi

ustvariti navidezno katodo. V nalogi predstavljeni primeri prikazujejo trenutne spo-

sobnosti kinetičnih simulacijskih programskih kod in hkrati tudi nekatere njihove po-

mankljivosti. Za posamezne primere so predstsavljene primerjave med analitičnimi,

aproksimativnimi in simulacijskimi rezultati (tako za metodo PIC kot tudi TC).

Iz predstavljenih rezultatov je razvidno, da metoda TC prinaša prednosti v prime-

rih velikih gradientov in sistemov, v nastopajo velike razlike v gostoti delcev med

posameznimi področji v sistemu.

Za simulacije so bile uporabljeni preverjeni simulacijski programi, ki se za izvaja-

nje simulacij v različnih primerih uporabljajo že dalj časa (XOOPIC, BIT1) in za ta
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namen razvita simulacijska programa, ki deluje na osnovi brez-mrežne metode TC

(treecode): LTC in noveǰsa PEG-TC. Čeprav sta uporabljena similacijska programa

na osnovi metode TC trenutno v zgodnjih fazi razvoja in daleč od “produkcijske”

stopnje razvoja, se je brez-mrežna metoda TC izkazala za primerno za uporabo v

primerih visokih gradientov, kar je prikazano v primerih v nalogi.

Po prvih rezultatih se je metoda TC izkazala za obetajočo, kar kaže tudi interes

za vključitev metode TC v obstoječe simulacijske kode. Metoda TC (treecode) je v

zaključni fazi vključitve v priznano 1D simulacijsko programsko kodo OOPD1 (in

Python različico PYPD1), ki je bila razvita v Plasma Theory and Simulation Group

(PTSG) pod vodstvom prof. Johna Verboncoeurja na Michigan State University

(MSU). Za 2D simulacijsko kodo XOOPIC, prav tako razvito v PTSG (MSU), je

bila dodana možnosti izračuna gradientov električnih polj (v fazi zapisa rezultatov

v datoteke z rezultati), kar se je uporabilo pri simulaciji primera v poglavju 6.
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83





Author’s statement
The present Master Thesis, or Dissertation, is an extended written treatise that

presents original results and interpretations of a unique investigation by the degree

candidate under the supervision of his mentor doc. dr. Leon Kos and his co-mentor

prof. dr. Jožef Duhovnik.
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