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What is plasma?
Fourth state of the matter (fire).

Solids - have very strong intermolecular bonds.

Liquid - molecules are tied together by loose strings.

Gas - atoms bounce around freely in space.

Plasma - ionized gas, electrons and ions are separately free

Temperature is the average amount of kinetic energy per atom.
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Plasma properties

Quasi-neutral (ni = ne).

Thin sheath is observed at the wall (λD � L).

Exhibit collective motion - collisionless.

Very conductive - can be shaped and confined by
electro-magnetic forces.
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Laboratory plasmas
Aparatus used for producing a plane symmetric positive column in argon
showing the position of the probes. [from Harrison-Thompson, 1959]
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Fusion
Tokamak - Joint European Torus
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Particle tracing developed in LECAD
Toroidal and poloidal magnets

Figure: Particle trajectories by Eržen et al.
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Plasma diagnostics
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Geometry
One dimensional model

Φ(x)

x = 0 x = Lx = −L

Φ(x)

(x, v)

Φ(x′)

(x′, v′)

Φw

x

Figure: The geometry and coordinate system.

Plane–parallel geometry

Symmetric - we observe only one half

We normalize problem to L = 1.
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Motivation

Provide precise treatment of the sheath region to fluid
codes (SOLPS, EDGE2D).

No analytic-numeric kinetic code available for Tn > 0.

Particle In Cell (PIC) methods are not enough precise and
can’t simulate ε = 0 case.

Existing ε = 0 models are limited in temperature range.

No solution to ε > 0 kinetic model available.

Can velocity distribution function be obtained from
potential curves?
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Thesis statement

The problem of a special integro-differential equations
should be solved numerically without approximations
to achieve an extended solution range applicable to
fusion-relevant and general plasmas for an arbitrary
ion temperature and arbitrary finite ε.
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Methodology
In this thesis the author presents investigations and results with the following
assumptions

The Poisson equation is employed in the whole discharge
region.

A two-scale approximation is obtained just within the limit
of the infinitely small Debye length in comparison with the
system length.

The ion-source temperature can take an arbitrary value.

The electron-neutral impact is considered as a ionization
mechanism.
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Overview of existing models
Two-scale approximation

Φ

X

plasma solution

exact solution

sheath solution

Figure: Symbolic picture illustrating the two-scale approximation.

Plasma solution - Tonks–Langmuir model

Sheath solution - Bohm model

Exact solution - plasma + sheath (Our extended model)
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Plasma parameters

1 The macroscopic neutrality ne = ni

2 Strong electric field is localized to distance λD with

λD � L , ε ≡ λD/L (� 1) , (1)

where

λD =

√
ε0kTe

n0e2
, (2)

is the Debye radius.

3 The number of the particles in the Debye sphere is high

nλ3
D � 1 . (3)
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Tonks-Langmuir (T&L) model

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

x

T
n
 =0

(T&L model) 

s
 = -0.85403

Ions are born at rest (cold ion-source case).
Analytic kinetic solution for ε = 0.
Beakdown of quasi-neutrality at Φs = −0.85403.

Lewi Tonks and Irving Langmuir.

A general theory of the plasma of an arc.
Phys. Rev., 34(6):876–922, Sep 1929.
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Bissell-Johnson (B&J) model (ε = 0)
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τ = 1.0
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τ = 4.0

τ = 0.1

Figure: Kernel F (θ) B&J equation (left, dashed), our approximation
(right, dashed) and the exact kernel (solid).

Realistic Maxwellian ion-source velocity distribution.

The Bohm criterion is used as the boundary condition to
the quasi-neutrality equation.

Kernel approximation with 8-th order Chebyshev
polynomial and sinh(.) switch function.

Plasma Eq. with 9-th order polynomial.

R. C. Bissell and P. C. Johnson.

The solution of the plasma equation in plane parallel geometry with a Maxwellian source.
Physics of Fluids, 30(2):779–786, 3 1987.
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Scheuer-Emmert (S&E) model (ε = 0)

Better kernel approximation.

Did not apply any kind of Bohm criterion in advance.

Dense grid at endpoint singularity.

Analytic approximation to sub-integrals with a series
expansion.

Different normalization than B&J.

Ion source temperature range is still limited to non-fusion
temperatures.

J. T. Scheuer and G. A. Emmert.

Sheath and presheath in a collisionless plasma with a maxwellian source.
Physics of Fluids, 31(12):3645–3648, 1988.
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S&E and our results
What ion-source they employed?

Figure: Comparison of the potential profile with S&E for Ti = Te .
The original scan is overlayed with our potential profile and axis box.
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OUR FUNDAMENTAL WORK

1 Analytic-numerical method (ε = 0) for wide temp. range

2 Extension of the theoretical model (ε > 0)

L. Kos, N. Jelić, S. Kuhn, and J. Duhovnik.

Extension of the Bissel-Johnson plasma-sheath model for application to fusion-relevant and general
plasmas.
Physics of Plasmas, 16(9):093503, 2009.

L. Kos, N. Jelić, and J. Duhovnik.

Modelling the plasma-sheath boundary for plasmas with warm-ion sources.
In Proceedings of the International Conference Nuclear Energy for New Europe, pages 807.1–807.8,
2008.

L. Kos, J. Duhovnik, and N. Jelić.

Extension of collisionless discharge models for application to fusion-relevant and general plasmas, In
NENE 2009, pages 820.1–820.10. 2009.

N. Jelić, L. Kos, and D. D. Tskhakaya (sr.).

The ionization length in plasmas with finite temperature ion sources.
Physics of Plasmas, 2009. (under review).

M. Haefele, L. Kos, P. Navaro, and E. Sonnendrücker.

Euforia integrated visualization.
In PDP 2010 , Pisa, Italy, 2010. (accepted).

F. Castejón Maga na, L. Kos, et al.

EUFORIA: Grid and high performance computing at the service of fusion modelling.
Ibergrid. Grid Infrastructure Conference Proceedings, 12-14 May 2008, Porto, Portugal
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Analytic-Numerical method
Dimensionless quasi-neutrality equation

We are solving special integral equation in normalized form

1

B
=

1∫
0

dx ′ exp

[(
ϑ+

1

2Tn

)
Φ(x ′)−

(
1 +

1

2Tn

)
Φ(x)

]

× K0

(
1

2Tn
|Φ(x ′)− Φ(x)|

) (4)

Φ(x) is the unknown electrostatic potential

B is the unknown constant which we fix by chooosing
Φ(0) = 0.

K0(z) is the modified Bessel function with logarithmic
singularity at |z | = 0.

Tn (neutral-gas temp.) and ϑ (ionization mechanism) are
free parameters.
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Computational domain in 1-D
We introduce the following node positions for N points of the system

xi =
[
1− [1− i/(N − 1)]λ2

]λ1

, i = 0, 1, . . . ,N − 1 , (5)

where λ1 and λ2 control the density at each boundary.

0.9999992 0.9999994 0.9999996 0.9999998 1.0000000
-0.80995

-0.80990

-0.80985

-0.80980

-0.80975

-0.80970

-0.80965

x

Figure: Last 28 points of the potential profile for Tn = 0.1, ϑ = 1
with N = 2401 points and grid density λ1 = 1, λ2 = 2.4.
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Discretized version suitable for iteration

exp

[
(1 +

1

2Tn
)Vk

]
= B

N−1∑
i=0

xi+1∫
xi

dx ′ exp[(ϑ+
1

2Tn
)V (x ′)]

× K0

(
1

2Tn
|V (x ′)− Vk |

)
.

(6)

Iterative formula (7) that evaluates to new Vk is
mathematically exact, but can only be applied when all Vk are
perfectly accurate.

Vk =
1

1 + 1
2Tn

ln(B
N−1∑
i=0

Li ), (7)
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What about eigenvalue B?
Only one equation (4) and two unknowns Φ(x) and B!

B appears to be a true eigenvalue of the system.

B contributes to shift only.

B can be calculated at any position like Eq. (7) during
iterations.

200 400 600 800 1000

0.3004

0.3006

0.3008

0.3010
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Iterate using soft (time) step

V new
k = Vk + α(Vl − Vk) (8)

With sufficiently low α Eq. (6) converges!

α averages many previous solutions.

Practical values in range [0.0001, 0.1]

Consequence - huge number of iteration steps required
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Can we speedup convergence somehow?
Yes, with parabolic interpolation near x = 0!

Vk = ax2
k + bxk + c , k = 0, 1, . . . ,m (9)

a =
Vl − Vm

x2
l − x2

m

, b = 0 , c =
x2
l Vm − x2

mVl

x2
l − x2

m

,

where mesh point xl is chosen at l = 3/4m.

Practical value for the length of rewrite is from 1% to
10%.

Completely disable it when approaching saturated solution.
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Solution smoothing
What is this good for?

A simple Laplacian-like smoothing technique with smooth-step
parameter β

V new
k = Vk+β

[
Vk−1 + Vk+1

2
− Vk

]
, k = N−1,N−2, . . . , 1 .

(10)

Prevents low frequency oscillations of the solution.

Helpful for Tn ≤ 0.05.

Practical range [0, 1].

Should vanish for the final solution.
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Implementation aspects

Direct integration using adaptive quadrature (QAG,
QAGS)

We extended Gnu Scientific Library (GSL) integration
routines to 128 bit long double for improved accuracy.

Parallelization using OpenMP standard

Employment of XML schema for input

Dump files for restarting

Regrid for faster convergence from scratch
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Convergence demonstration for ε = 0
Tn = 10, iteration steps = 139000
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Extended model requires?
Simultaneous solving of

Boltzmann’s kinetic equation

v
∂fi
∂x
− e

mi

dΦ

dx

∂fi
∂v

= Si (x , v) , (11)

with the ion-source term Si (x , v)

Si (v , x) = Rnnne(x)fn

(
v

vTn

)
, (12)

and Poisson’s equation

− d2Φ

dx2
=

e

ε0
(ni − ne) . (13)
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Extension of the theoretical model
Target equation for ε > 0

We are solving a special non-linear integro-differential equation
with a singular kernel

1

B
=

1

1− exp(−Φ)ε2
d2Φ

dx2

×
1∫

0

dx ′ exp

[(
ϑ+

1

2Tn

)
Φ(x ′)−

(
1 +

1

2Tn

)
Φ(x)

]

× K0

(
1

2Tn
|Φ(x ′)− Φ(x)|

)
(14)
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Numerical method for ε > 0

Converted to relaxation method with

Initial floating wall potential

Φ[i ] =
Φw

1− exp(1)

[
1− exp

(
i

N

)]
, (15)

from ε = 0 case

Floating wall condition

exp(Φw ) = 2π

√
me

mi

√
Tn

Te
B

∫ 1

0
dx ′ exp[Φ(x ′)] , (16)

is smoothly adjusted after converged state is reached.
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Convergence demonstration for finite ε
Tn = 0.1, ε = 0.001, iteration steps = 172000
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Figure: Potential profiles for various ion-source temperatures as
obtained by us with the exact kernel (solid lines) and by Bissell and
Johnson with their approximate kernel (scattered).
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Plasma sheath boundary potential Φs

0 1 2 3 4
0.2

0.4

0.6

0.8

1.0

 Scheuer & Emmert's
data scanned (from their Fig 2)

 Present work

-
b
=

-
s

T
n
/T

e

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1.0

 Results of the present work 
obtained and presented  in an
extremly wide range of 
ion source temperatures

-
b
=

-
s

T
n
/T

e

(b)

(a)

The plasma sheath
boundary potential in a
limited range of ion
source temperatures,
where the S&E
approximate kernel is
valid, in comparison
with our results (a), and
in a wide range of of the
ion source temperatures
(b), where we employed
the exact kernel.



Extension of
collisionless
discharge

models . . .

34/47

Introduction

Overview of
existing
models

Analytic-
numerical
method
(ε = 0)

Extension of
the theoretical
model
(ε > 0)

Results

The two-scale
limit ε = 0

Unified plasma
and sheath
solution ε > 0

Conclusion

Wall potential Φw

0 2 4 6 8 10 12 14 16 18 20
-3.6

-3.4

-3.2

-3.0

-2.8

-2.6

-2.4

T
n

w

0.00

0.25

0.50

0.75

1.00

1.25

1.50

B

(b)

(a)

The dependence of B
(a) and of the wall
potential (b) on the ion
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Trajectory method
Method of characteristics for Velocity Distribution Function fi (Φ(x), v)
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ni (Φ(x)) =

∫ ∞
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fi (v)dv

in a logarithmic presentation
as a function of local potential
Φ(x).
(b)The ion flux

Γi (Φ(x)) =

∫ ∞
−∞

vfi (v)dv

as a function of Φ(x) .
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(a)

Profiles of the ion temperature
Ti for various ion source
temperatures. The ion total
energy:

Ki (Φ(x))) =
1

ni

∫ ∞
−∞

v 2fi (v)dv

Ion directional velocity:

ui (Φ(x)) =
1

ni (Φ)
Γi (Φ)

The ion temperature:

Ti (Φ(x)) = Ki (Φ)− u2
i (Φ)
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Figure: The ion temperature at the center and the edge of plasma for
various ion source neutral temperatures.
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Figure: Ionization lengths of the Maxwellian-source and flat-source
ionization mechanisms as defined by H&T.

E. R. Harrison and W. B. Thompson.

The low pressure plane symmetric discharge.
Proceedings of the Physical Society, 74(2):145–152, 1959.
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(a)

Potential profiles for various ε
and
(a) Tn = 0.1,
(b) Tn = 1.0,
(c) Tn = 10.0.
Our results obtained with the
fixed system length L = 1.
Wall potential Φw is
dependent on Tn.
Hydrogen was used for this
simulation.
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Rescaled potential profiles for various ε
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(a)

Potential profiles for various ε
and
(a) Tn = 0.1,
(b) Tn = 1.0,
(c) Tn = 10.0.
Rescaled results according to
xs =

√
2π
√

TnB.
From (b) it can be observed
that wall potential Φw also
changes with ε.

K.-U. Riemann.

Plasma-sheath transition in the kinetic
Tonks-Langmuir model.
Physics of Plasmas, 13(6):063508, 2006.
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Figure: Potential profiles for various ε and Tn = 1 with a zoomed x
range shows high precision results with ε ≤ 0.0006.
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Dependence on Tn
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Figure: Potential profiles for various ion-source temperatures and
fixed ε = 0.01.
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Our contributions

Extended temperature range with exact kernel.

Derived quantities obtained from velocity distribution with
direct integration.

Extension to the case of finite ε.

Future work

Precise investigation of the sheath edge singularity.
Definition of PWT on the basis of VDF for ε > 0.
Parallelization with MPI.
Continuation of work in EUFORIA project.
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Singularity form for ε = 0 (preliminary results)
Finding power of α with fitting (Φs − Φ)→ C(xs − x)α
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Figure: Dependence of αmax on the ion-source temperature for
logarithmic scale of Tn.
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